
Mission Director © Egosoft 2007

Page 1 of 56

Mission Director

BBS and In Space

Mission-development Guide

A beginner’s guide to

 developing mission

content for Egosoft

 franchise games

v1.22

Mission Director © Egosoft 2007

Page 2 of 56

 Mission Director – Beginners’ Guide

Introduction.. 3
Mission Director - setting up .. 4
XML editing tools ... 5
Creating a new Mission Director mission file ... 6
XML Formatting requirements .. 7
<cues> .. 7
<cue> .. 8
<condition> .. 8
Variables... 9
<timing>.. 11
Units of Time and Distance... 12
Expressions ... 12
<action> .. 13
Example 1 ... 14
Testing your first mission file ... 15
‘In Space’ mission-writing tutorial ... 15
BBS mission-writing tutorial .. 42
A variable worth knowing about… ... 48
Incorporating In-Game sounds .. 50
Incorporating texts .. 50
Testing your missions .. 51
Glossary ... 53
Appendices .. 54
Appendix 1: Instantiation .. 54
Appendix 2: Library Cues ... 55

Mission Director © Egosoft 2007

Page 3 of 56

INTRODUCTION

In previous games of the X Series, missions (both plot and non-plot) have been tricky to
develop, difficult to test and prone to a high error rate, due to the strict coding
requirements of KC. This resulted in show-stopping plot bugs and a very limited variety of
non-plot missions.

The aim of the Mission Director is to provide a user-friendly method of developing and
scripting missions, which is easier and more approachable for the non-programmer. A
secondary aim is to make it possible to deliver mission-based content without the need for
game patches.

An XML-based mission-design framework has been selected to provide easy „plug-in‟
functionality and more accessibility to non-programming mission designers. That‟s where
you come in…

With a basic understanding you can easily produce events in the game that can
collectively form the features of a mission for the player to complete, while interacting with
any game object, like stations or ships.

It is relatively easy to get started with Mission Director and it requires only a very
rudimentary understanding of „data logic‟ in order to build missions. As your confidence in
using the Mission Director grows, so too will the complexity of the „code‟ and therefore the
missions that you will be able to develop.

The structure of mission files is fairly rigid and lends itself well to simpler debugging,
testing and modification without fear of damaging underlying game code. You can easily
produce a simple event, get to see and try it out in the game, change it again and then
see these changes just by resetting the Mission Director in-game or reloading the game
itself. This unprecedented flexibility is one of the key features of the Mission Director and
speeds up the mission development process remarkably.

Examples

A range of missions is already being produced as MD development progresses. A great
way to understand how things work is to look at an example of one of these and keep
editing it with changes to see what the effects are. This will not only help you with
understanding how things are done, but will also provide you with a library of examples of
good practice and guidance to achieve what you want to.

It will help even more, if you study a mission similar to the one you are developing, so you
can change, edit or even take slices of code for your own mission. Doing so is not
plagiarism, it is a compliment to the original developer. This guide will give you a basic
introduction to the key elements of a mission and will then progress to a couple of mission
tutorials, providing a step by step guide to creating a mission. Once you have completed
the tutorials you should have a better idea of how the system works and get your mission
development skills off to a good start.

Mission Director © Egosoft 2007

Page 4 of 56

Scope
While some experience of programming can be useful for understanding processes, it‟s
by no means essential. In fact it can sometimes be a hindrance, as MD is event-driven,
rather than object-driven, so programmers will have to think differently. This guide
assumes you have very limited or no knowledge of programming and has been written for
beginners. It is assumed, however, that you have a good knowledge and experience of
the X-Universe. It is hoped that it is useful to all who choose to use it.

Disclaimer
At this stage of its development this version of the Mission Developer is unsupported by
Egosoft. Assistance can be obtained from volunteers on the forum, but any problems
with coding or schemas will not be fixed. There are a number of known minor issues, but
none of these should significantly affect your use of the Mission Director.

MISSION DIRECTOR - SETTING UP

The Mission Director is activated concurrently with the Script Editor when the player name
is changed to Thereshallbewings. You need to ensure that you have a folder in your main
game folder called „director‟. You need only have the mission file you want to play in this
folder, but if you wish to edit files, you should have the files below.

Location of MD files

director - the files required to edit mission files are illustrated in the upper portion of
Figure 1:

The six files at the top of Figure 1 must all be present in the director folder if you wish to
write/edit missions. Any number of XML mission files can exist in the directory and the
game will attempt to load all XML files into the game when it loads. In order to ensure
there are no conflicts, it is important that all cues in these files are uniquely identified.
The two other files are example XML files.

Figure 1‘Deepsilver\X3 Reunion\director’ folder

Mission Director © Egosoft 2007

Page 5 of 56

Here‟s an overview of the function of some of those files in the director folder:

director.html

This is a really useful file when starting out. It‟s a page full of every MD „command‟
and its attributes. It also contains a myriad of useful variables. You can filter the
list to narrow down what you‟re looking for. This file is updated each time new
functionality is added to the MD. You may get an Internet Explorer message that it
has blocked active content, which will prevent it from working. Right click on the
message to allow blocked content, to see the full listing.

director & dirschema XSL stylesheets and director cascading stylesheet
These files provide the formatting information for the XML and HTML files in this
folder.

director & dirobjdb XML schema files
These two files provide the naming conventions, look-up functionality and content
which is available to the mission designer in their chosen XML editor (if the editor
supports the use of schema files). The dirobjdb.xml file gives the designer full
access to the „typename‟ of all X3 game objects. This speeds up object-related
coding immeasurably.

XML EDITING TOOLS

There are a number of free and commercial XML editors available on the internet. In this
guide Visual Studio 2005 Web Developer Express edition is used as it fully supports the
XML schema used by MD, but unfortunately does not have a tree-view. This is currently
free for download.

Whichever is used will need to have full support for XML schemas (not DTDs) and
stylesheets as well as basic XML editing, and should preferably offer syntax highlighting,
auto-completion, tree views and so on too. In order to ensure that all developers have the
optimum environment for developing their missions, we recommend and prefer that Visual
Studio 2005 Web Developer Express edition is used. If all developers are using the same
tool, it also helps to reduce support overheads for other less suitable tools, so more time
can be spent on mission development.

http://msdn.microsoft.com/vstudio/express/vwd/
http://msdn.microsoft.com/vstudio/express/vwd/
http://msdn.microsoft.com/vstudio/express/vwd/

Mission Director © Egosoft 2007

Page 6 of 56

CREATING A NEW MISSION DIRECTOR MISSION FILE

In this section we will look at how to start the whole process by creating a new MD
mission file and the basic steps in producing mission content with XML code. There will
be a description of the key elements of the mission file. We will also start to build up a
small example mission file as we progress.

Open the template.xml file located in the samples folder within your director folder. You
can start creating your mission straight away using this file. Remember to save it fairly
early on with a new name and ensure that the saved file remains in the director folder.

Figure 2 Mission Director template

File creation troubleshooting

If you‟re trying to edit a mission file not located in the director folder, then you will find that
none of the schema look-ups will work, as illustrated in Figure 3. There are two ways
around this. Firstly, you can move the file you are editing into the director folder or
secondly, you can copy the schema and related files from the director folder into your
working directory.

A good practice before making a substantial set of changes to your mission is to back it
up to another folder, so if things don‟t work out, you can go back to a previous version.

Figure 3 No schema data

If, as in Figure 4, director.xsd has an error highlight, this is a further indication that the file
has no access to the schema and stylesheet data in the director folder. You should move
or save your file into there to make use of the MD files. Alternatively you could copy your
Director files to your working folder, but you‟ll need to remember to update both sets as
new schema definitions become available.

Figure 4 director.xsd – schema not located

Mission Director © Egosoft 2007

Page 7 of 56

XML FORMATTING REQUIREMENTS

Notwithstanding the functionality of the XML editor you are using, there are certain rules
in using XML which need to be adhered to, if your mission is to load successfully into the
game.

Using indents with tags is important to show the hierarchy of functions of each tag.

<parent_node>

<first_subnode>
 <second_subnode>
 <nested_function/>
 </second_subnode>
 </first_subnode>
</parent_node>

It is important to note at this stage that all XML tags need to be closed. This is achieved
in one of two ways. Firstly if a tag has no dependent child elements it can be closed at the
end of the line, for example: <find_sector x=”0” y=”0” name=”kingdomend”/>. If there are
any dependent child elements, then the tag is separated as above. As <parent_node>,
<first_subnode> and <second_subnode> have dependent child elements the tags are
closed after all of the dependent elements by repeating the tag with a / before the tag
name as above, for example </parent_node>.

<CUES>

The cues tag tells the XML parser that the sub-node <cue> will follow. There may be
multiple instances of the <cue> tag contained within <cues> and also there may be
further instances of <cues> within these.

Figure 5 <cues>

By placing the cursor between the <cues> and </cues> (see Fig 5) and pressing return,
the cursor should move to the right place for the next tag, which is <cue>.

Mission Director © Egosoft 2007

Page 8 of 56

Figure 6 <cue>

<CUE>

The cue tag sets up the environment in
which the event will occur, using the
attributes seen in Fig 6.

The use of the „instantiate‟ attribute can
be quite complex. A detailed description
of how this works can be found in
Appendix 1: Instantiation.

The cue node has up to four sub-nodes. They are:

Sub-node Mandatory Multiple Notes

<condition> no no Cue triggered automatically if not supplied

<timing> no no
Cue actions performed immediately, once, if

not supplied

<action> no no
Cue events triggered but no actions performed

if not supplied

<cues> no no Sub-cues for this cue

Table 1

Table 1 shows the four key sub-nodes that you will work with. <action> is the event
which occurs a certain <timing> after the <condition> is met. <cues> may occur as a
result of the <action> with its own sub-cues, conditions, timings and actions.

<CONDITION>

Figure 7 Condition has many available attributes

Mission Director © Egosoft 2007

Page 9 of 56

<condition>

 <check_age value="{player.age}" min="5s" max="7s" />

</condition>

The Condition component consists of one or more conditions that must be met in order for
the Cue to be triggered. These conditions may be based on simple values or ranges,
such as a particular in-game time having been reached or the player having a certain
amount of money. They may also be based on more complex player information, such as
what ships they own, whether the player is in a particular area or near a particular object.

Another important class of conditions are based on notification-type events, such as
notification that a particular object has been targeted, attacked or destroyed, or
notification that a BBS offer has been accepted or rejected. Conditions can be combined
into lists in which all must be met or any one must be met for the Cue to be triggered, and
these lists can be nested if necessary in order to model complex trigger requirements.

There can be more than one condition that has to be met for the action to trigger (using
<check_all>) or one of a number of conditions could be met to trigger the action (using
<check_any>). It is important to note that when using <check_all>, the conditions
are checked in sequence. If the first condition fails, then no others will be checked.
So if you are checking events and values in the same cue, always put the events
first as they are only usually checked once as they occur, whereas values are
checked each time the file is read. The condition of any cue may be dependent on the
status of another cue. For example, once the „parent‟ cue has been completed, the
condition for the current cue is met and the action is triggered (using <cue_is_complete
cue=”parent”/>). For an initial cue‟s condition something as simple as player time (see
Figure 7) may be used.

Whichever condition is selected, once met and following the timing/counter criteria
outlined in the next section, the action(s) associated with the cue will be triggered.

Here a minimum of 5 seconds and maximum of 7 seconds of game time must expire for
the condition to be met.

When referred to in a time value, the abbreviations s, m and h are used for seconds,
minutes and hours.

VARIABLES

Looking at the example above, you‟ll notice {player.age} being used in the value=””
attribute. This is a „variable‟, a piece of information taken from the game and used in the
code. There are a number of variables, for which the subject is implicit, for example
{player.age}, {player.ship} and {player.money}.

{player.sector.race.name} can be used when you need the race name of the owner of the
player's current sector, whichever that may be.

Other variables are similar to those we‟ve just seen, but there is an additional element in
which there is a user-defined element showing what the subject of the variable is; such
subjects are separated by the @ sign. For example:

Mission Director © Egosoft 2007

Page 10 of 56

{object.pilot@object} – if you create a ship and want to get the name of its pilot, you
substitute the object after the @ for the object name, i.e. {object.pilot@myship} . This is
useful in such things as <incoming_message author=”{object.pilot@myship}”
text=”test”/>. One important aspect of variable use in the Mission Director is the creation
and use of „global‟ and „local‟ variables. The creation of a global variable means that the
variable should be available to all running xml missions. Making a variable local will
mean that as long as it's properly referenced, it will only be available in that mission.

<cue name="createopponent"> <- The cue we’re creating a ship in
…….
<create_ship name="opponent" <- This creates the object as a global

<create_ship name="this.opponent" <- This creates it as a local variable

The „this.‟ suffix will only be used in the cue that the object and variable is created. If you
need to use this variable in a subsequent cue it must be referenced using the cuename of
the cue, in which it was created. In the case of our example above, when we need to use
the object in another cue, it might appear like this…

 <incoming_message author={object.pilot@createopponent.opponent}
text="{1081,16}"/>

Here we‟ve used the cuename „createopponent‟ separated by a full stop/period and then
the object name.

Advanced Information on variables:

For the variables representing instance, index and value information, cue names are used. For plot missions and

other missions where a single instance is used this is normally sufficient. However, for missions where multiple

instances may be running at once (e.g. BBS missions) it is sometimes useful to be able to identify specific

instances. When identifying cue instances, the Mission Director will first try the current cue instance, then the parent

cue instance, and so on up to the top level of the cue structure. It will also try back down other "branches" of the cue

tree structure at each stage.

If it doesn't find a cue of the correct name then it will start looking down all cue structures but may not always find

the correct instance (in fact for instantiated cues it will always find the master instance). You can shortcut this

process and prevent the latter part of it by using "this" to refer to the current cue instance rather than the cue name,

and "parent" to refer to the parent cue instance.

Mission Director © Egosoft 2007

Page 11 of 56

<TIMING>

The Timing component determines exactly how long after the Condition is met the Cue
will actually be triggered and its actions performed. The Timing component also
determines how often the actions will be performed. The Timing component can cause
the actions to be performed a fixed or random number of times, with multiple timings
being distributed either randomly or at intervals (again, fixed or random). There can only
be one timing node and it is also not mandatory, meaning that the action will occur once
and immediately upon all conditions being met.

Sub-node Notes

<count> Number of times the actions will be performed

<time> Time range over which the actions will take place

<interval> Interval specification within time range

<params> Parameters specified in a library cue

Table 2

Figure 8 shows that between 5 and 10 seconds after the condition is met, the action will
be carried out.

Figure 8 <timing> example

Figure 9 shows that with a count of 50-100 selected, one of 5 randomising profiles can be
chosen, in this case „increasing‟ meaning that the number of iterations are likely to be
higher (nearer 100 than 50).

Figure 9 profile attributes

Figure 10 shows an interval of 5s, meaning the action will be repeated at 5 second
intervals.

 <timing>

 <time min="5s" max="60s"/>

 <interval min="5s"/>

 </timing>

Figure 10 interval example

Mission Director © Egosoft 2007

Page 12 of 56

UNITS OF TIME AND DISTANCE

Standard units of time and distance are converted into internal values by the MD.

distancem 100m Converts from metres to internal units

distancekm {value@this.xpos}km Converts from kilometres to internal units

timed 5d Converts from days to milliseconds

timeh 12h Converts from hours to milliseconds

timem {value@this.delay}m Converts from minutes to milliseconds

times ({value@this.delay}*10)s Converts from seconds to milliseconds

m:s.ms 1:30.500 Converts from minutes/seconds/milliseconds to milliseconds

h:m:s.ms 1:30:0.0 Converts from hours/minutes/seconds/milliseconds to milliseconds

For time conversions involving : symbols it is advisable to avoid leading zeros in any
element, so the milliseconds (ms) should be treated as a number not a decimal fraction!
Note that days cannot be specified in this format. The maximum time period that can be
used in all cases except the {player.age} value is 24 days. {player.age} can be longer time
periods but milliseconds are ignored in this case.

EXPRESSIONS

When using variables and working with values, it is possible to use basic mathematical
operators in expressions. For example, if you want to check if a sum of money is at least
1000Cr more than the player has you could use the following:

<check_value value="{this.cashsum}" min="{player.money}+1000"/>

The following expression operators can be used in any attribute whose format is "number"
(as opposed to "integer"):

Operator Example Description

x+y {value@this.mylocalvalue1}+{value@this.mylocalvalue2}+2 Add

x-y {value@this.mylocalvalue1}-{value@this.mylocalvalue2} Subtract

x*y {counter@myloop}*10 Multiply

x/y 100/{value@this.mylocalvalue} Divide (note: division by 0 results in 0)

(x) (100+{value@this.mylocalvalue})/10 Evaluate bracketed expression first

Operator precedence is () followed by * / and then + -. Operators at the same precedence level
are parsed left to right.

Mission Director © Egosoft 2007

Page 13 of 56

Figure 11 Some <action> sub-nodes

<ACTION>

The Action component determines what happens when the Condition is met and the
Timing component has determined that the Cue should finally do something. Note that the
Action component may actually be performed more than once if the Timing component
defines multiple timings. A Cue may consist of one single action, such as adding some
money to the player's account, sending the player a message, or creating a ship or group
of ships, or it may consist of a list of actions. A list of actions may all be performed in
sequence, or you can specify that just one randomly selected action in the list should be
performed.

As with Condition lists, Action lists can be nested allowing
relatively complex sequences or alternatives to be
modelled. An important thing to note, however, is that an
Action list is not a program. Normal programming
structures such as loops and conditionals do not exist in
the sense that a programmer might expect. In complex
cases the Timing and Condition components should be
used to handle loops and conditionals respectively, but
for some simple cases there are alternatives which can
reduce the complexity of the cue structure. The range of
actions that can be performed will grow as new

requirements are found, but the key is that these actions are centrally coded and
maintained, minimising repetition and minimising the maintenance overhead.

There should normally be an action node in each cue and there can only be one per cue,
so if multiple actions are required these must be represented in sub-nodes, using either
<do_all> to perform all of the actions contained within that particular sub-node, or
<do_any> to perform one of the listed actions. If neither of those two sub-nodes is used
then only one single action will be possible. As alluded to above <do_all> and <do_any>
can be nested within each other to provide a wider range of action possibilities.

This is actually also true of <check_all> and <check_any> in the <condition> sub-node.
This will be explained in greater detail later. Also available is <do_if>, which completes
the enclosed action(s) only if one provided value matches another. <do_choose> is a
slightly more sophisticated version of the <do_if> that allows you to perform multiple
checks and also have an "otherwise"
option which is executed if none of the checks are successful. Sub-nodes of
<do_choose> are <do_when> and <do_otherwise>.
In the example below, using the <do_any> sub-node, we can create a bank of incoming
messages, for example. When the cue‟s condition is met, one of the three messages will
be randomly selected and sent to the player‟s logbook. In the particular instance of the
<incoming_message> action, the author could be a text string, or more likely a text id.
Text is, of course, the message body itself, which can be either free-flow or a text
referenced from the game‟s text database.

Mission Director © Egosoft 2007

Page 14 of 56

<action>

 <do_any>

 <incoming_message author="Shipboard Computer" text="Hello World"/>

 <incoming_message author="{1323,119}" text="Welcome to MD"/>

 <incoming_message author="{1323,119" text="{1278,305)"/>

 </do_any>

</action>

Once you have completed the <action> node you can insert more dependent <cues> or
close that particular </cue>.

EXAMPLE 1

Here‟s roughly what you can do so far:

<?xml version="1.0"?>

<?xml-stylesheet href="director.xsl" type="text/xsl" ?>

<director name="test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="director.xsd">

 <cues>

 <cue name="evaluator" game="all" version="1" comment="this is only so we

know what's happening in this cue">

 <condition>

 <check_age value="{player.age}" min="5s" max="7s" />

 </condition>

 <timing>

 <time min="5s" max="10s"/>

 </timing>

 <action>

 <do_any>

 <incoming_message author="Shipboard Computer" text="Hello World"/>

 <incoming_message author="{1323,119}" text="Welcome to MD"/>

 <incoming_message author="{1323,119}" text="{1278,305)"/>

 </do_any>

 </action>

 </cue>

 </cues>

</director>

Mission Director © Egosoft 2007

Page 15 of 56

TESTING YOUR FIRST MISSION FILE

Once you‟ve saved your first mission file, check first that it‟s located in the game‟s director
folder. Once again, make sure that none of the cues in your mission are the same as
those in existing XML files in the director folder.

The next step is to start the game. Start a new game in a custom universe and change
your name to Thereshallbewings. If you‟ve set the condition and timing as it is in the
example above, then you should very quickly receive one of the three messages or an
action of your own should have been triggered.

In order to make testing and debugging easier for the mission developer there is a file
which may assist in diagnosing errors in your code or the game.

This is director.dmp – this is located in your main game directory and provides a
millisecond by millisecond account of what your mission is doing. This includes all the
good things as well as any errors.

There will be more on mission testing later.

‘IN SPACE’ MISSION-WRITING TUTORIAL

In this section you will be guided through the creation of a mission, step by step, with a
detailed explanation of each key element of the file. The mission is based on an old X-
Tension favourite and is called Docking Race Bet. While this is not the ideal place for a
tutorial on how to use VS2005, there are a couple of handy tips you should know before
you begin.

 If you lose a look-up list for an attribute, you can get it back by pressing Ctrl-Space.
 The formatting of the file generally looks after itself.
 You can take a better look at your script‟s cue hierarchy by using the -/+ markers

on the left of the page to collapse and expand cues and their elements.
 Hovering your mouse over an entry underlined in blue or red will give you a reason

for the problem.
 Hovering your mouse over any element of the code gives further information about

it.
 When a list of possible entries is offered to you, highlighting one of these entries

will normally give you a description of its meaning.

The first key element of the file is the header, as illustrated in Figure 2, above.

<?xml version="1.0" encoding="iso-8859-1" ?>

This line defines the encoding system that will be used to format the file.

<?xml-stylesheet href="director.xsl" type="text/xsl" ?>

This line defines the stylesheet that XML will use to format the file.

Mission Director © Egosoft 2007

Page 16 of 56

<director name="template" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="director.xsd">

This long line tells the file where to look to find the schema file, which it uses to define all of the
commands and lookups that you will use. Note that the name attribute of the <director> tag is
not used in the game, but if the XML file is opened in a browser then the value it contains will be
shown at the top of the page and in the page title. This name is for the file as a whole, not for
the individual cues within it.

The next couple of lines are fairly self-explanatory and for officially-developed missions
the fields are mandatory. The <documentation> node tells testers and developers alike
who developed the mission and how to contact them for feedback/comments, as well as
providing version and specification information about the mission.

<documentation>

 <author name="Fred Bloggs" alias="Froggs" contact="froggs@egosoft.com"/>

 <content name="Docking Race Bet" description="player is asked by a fighter

pilot to race him to the local trading station"/>

 <version number="1.0" date="2006-06-15" status="beta test"/>

</documentation>

In these missions we are using an internal mission serial number to prefix some cues.
This is by no means essential, but doing so will ensure that there are no conflicts with
other XML mission files that may use an otherwise identical cue name. It is absolutely
essential that unique cue names are used at the top level of the structure otherwise cues
in one file could overwrite those in another - at lower levels sub-cues must be uniquely
named within their parent rather than globally, but mission developers should try to get
into good habits!

<cues>
The next node in all cases will be <cues>. As illustrated earlier, once you have typed
<cues>, its closing tag </cues> should appear. Once you have split the tag by pressing
return you cursor will automatically be placed for the next sub-node. Before continuing,
it‟s worth reiterating that inside this <cues> node there can be any number of nested
<cue> and <cues> nodes. For now though, let‟s concentrate on where we are.

<cue>

The first cue that we define in any mission is called the top-level cue; that is, all other
<cue> and <cues> nodes are subordinate to or stem from the condition, timing and action
carried out in this cue. If you like, you can see this as the initial trigger that sets the whole
mission in motion.

 <cues>
 <cue name="S01M25S00prepare">

As mentioned earlier, it‟s important to have a unique cue name here. There are other
<cue> attributes that can be specified at the beginning of a mission.

game=”” will determine in which game mode(s) the mission will be available in, for
example, all, plot, noplot, custom (If not specified, the default is „all‟).

Mission Director © Egosoft 2007

Page 17 of 56

map=”” specifies a pre-defined map that the mission will use.

instantiate=”” 'static' creates a working copy of instantiated cue(s) independent of the
original(s). This applies to any cue, not just at the top-level. See Appendix 1 for more.

library=”” sets the cue as „library‟ only, meaning that all of the conditions, timing and
actions therein will only be carried out if later referenced using ref=””.

ref=”” is used to refer to a library cue.

comment=”” is used to provide commentary on the function of the cue. comment=”” is
available for all nodes and should be used liberally to inform testers and developers of the
purpose of that node. This helps immeasurably when debugging and troubleshooting.

A full explanation of the use of library="" and ref="" can be found in Appendix 2:
Library Cues

Next come the three crucial elements for each cue:

<condition>
In our mission there are a number of conditions that must be met for it to start.

1 <condition>

2 <check_all>

3 <object_changed_sector comment="check this first, other conditions are not

checked if this is false already"/>

4 <match_object class="fighter" comment="M3, M4 or M5"/>

5 <check_value value="{player.age}" min="1m"/>

6 <!--

7 <check_age min="10m" chance="(72000/{player.time})+1" comment="this should

reduce the chance of the mission being offered from 100% after 10 minutes

down to 1% after 20 hours"/>

8 -->

9 <object_has_equipment comment="if we have a docking computer, we'll race in

space">

10 <ware typename="SS_WARE_TECH241" min="1"/>

11 </object_has_equipment>

12 <check_value value="{player.money}" min="{reward.money@veryeasy.XXXT}+500"/>

13 <check_value value="{player.sector.race}" exact="{lookup.race@argon}"/>

14 </check_all>

15</condition>

Let‟s deal with this <condition> node line by line.
1 & 15: The open and close tags for Condition, that‟s fairly easy.

2 &14: <check_all> allows us to place a number of conditions, all of which must be met.

3: The first condition to be checked is <object_changed_sector> which is an event
condition and is met when the object arrives in a new sector or docks. If no object is
specified, it refers to the playership.

4: This line is checking if the player‟s ship matches the class „fighter‟, M3, M4 or M5.

Mission Director © Egosoft 2007

Page 18 of 56

5: Here we check that the age of the player {player.age} is at least one minute. This is
just a debug/testing value. Player age refers to the elapsed game time.

6&8: <!—- and --> can be placed either side of code that you do not wish to be parsed,
this „commenting out‟ is a useful temporary way of disabling parts of your code. It goes
without saying it can also be used for commentary pertaining to sections of your mission
code.

7: This alternative condition has been „commented out‟, as the one above is being used,
for the moment, as a debug value, to allow for easier testing. In the game proper the
condition should function as described in the comment field.

9-11: Here we‟re checking that the player has a docking computer. The <ware> subnode
must be used to specify the typename of the ware you want to check for, in this case it‟s
SS_WARE_TECH241, which is in the lookup list that appears. As mentioned earlier, it‟s
good practice to provide commentary on the steps you take. One important thing to note
in this sub-node is that when no object is specified using object=””, it will refer to the
playership by default. This is very useful to bear in mind. You can have more than one
<ware> sub-node allowing you to specify several items that the object must have.

12: This line checks that the money in the player‟s account {player.money} is at least the
same as the reward money for the mission+500Cr. Just in case the player loses the bet.
The pre-balanced rewards for each type of mission and difficulty can be found in the
director.html schema file.

13: The final check, although complicated at first sight, is comparing two variables, the

first {player.sector.race} represents the internal ID code used by the game for the
race of the sector in which the player is located. If this value then exactly matches the

value for {lookup.race@argon} which provides the internal ID code for the Argon race the
check is successful. So simply put, this checks that the sector the player is in is Argon.

So there‟s quite a few things which need to be true for the <condition> node to be met.
Do remember that <check_all> means all conditions have to be met.

TIP: If you need to have a <condition> node where some conditions must be met and
perhaps one of a number are met, you can nest a <check_any> within the <check_all>.

 On the other hand, if you have a number of blocks of conditions which must be met, but
you want one of those blocks to be selected randomly, then the nesting would be the
opposite way round i.e. <check_all> nodes nested within a <check_any> node.

Mission Director © Egosoft 2007

Page 19 of 56

<timing>

In this top-level cue the <timing> node is fairly uncomplicated:

 <timing>

 <time min="3s" max="5s"/>

 </timing>

This timing means that at some time between 3 and 5 seconds after all the conditions of
the cue have been met, the action will be triggered.

<action>

As with the <condition> node, there‟s a fair bit going in the <action> node, so we‟ll break it
down again.

1 <action>

2 <do_all>

3 <find_gate nearest="1" name="this.gate">

4 <distance max="10km"/>

5 </find_gate>

6 <find_station name="this.finish" class="trade" dockingallowed="1"

findobject="{player.ship}" max="1" typename="SS_DOCK_A_TRADE"/>

7 <set_value name="this.reward"

exact="({reward.money@veryeasy.XXXT}/100)*100" comment="extra /100 *100

to fake a rounded value ;)"/>

8 </do_all>

9 </action>

1&9: The opening and closing tags of the <action> node.

2&8: The <do_all> sub-node means that all actions contained within will be performed

3-5: The <find_gate> sub-node will in this case look for the nearest gate and also, as the
<distance> sub-node suggests it has to be within a maximum radius of 10 km. Once
found, such an object will be given the name “this.gate”. The name here is important, if it
were just “gate” then that name would become a global variable, available to the whole
game and all loaded MD files. As it is, we only want it to be local and therefore only
available to the cue in which it is declared. To do this we prefix the chosen name with
„this.‟

6: Next we want to find a station, which will be known as “this.finish” and must be of class
“trade”, ie a Trading Dock. Specifically we want to find only one of type
SS_DOCK_A_TRADE, the Federal Argon Trading Dock. Additionally, it needs to be a
station at which the object {player.ship} is able to dock.

7: The <set_value> sub-node ascribes a value or range of values to a name, in this case
„this.reward‟ which can then be used as a variable. As with the other names we‟ve
encountered so far, this is a local variable. The value ascribed to this name is defined in

the calculation (({reward.money@veryeasy.XXXT})/100)*100. When performing
calculations, you can only use whole numbers. If you use brackets, they will be evaluated

Mission Director © Egosoft 2007

Page 20 of 56

first. If there are nested brackets (not including variable braces { }) they will be evaluated
inner one first. So in our example, it‟s the prebalanced reward for a very easy XXXT
misson. The result of that is then divided by 100. The result of that calculation will then
be multiplied by 100. As the comment suggests the /100*100 attempts to give a rounded
value to the original value.

That‟s the first cue dealt with. In that cue we set the scene in terms of what conditions
need to be met to begin the mission, then a short time after those are met, we look for a
gate and a station, which will be the finish point of the race. Also we have set the
amount of money the player will win if successful,.

In the next cue, which is a sub-cue of the first, there is a little housework to be done
before the action starts. The aim of this cue is to check that the items we searched for in
the previous cue, the gate and the station, have been found. We‟ll look at what happens
if they‟re not found next. There‟s also a good example of nested conditions in this cue.

First, what makes a <cue> a sub-cue? It was suggested earlier in this document that
cues can be nested within cues. In order for this to happen we need to introduce another
<cues> node before closing our existing cue. This <cues> should directly follow the
</action> tag of the cue it is following, for example:

 </action>

 <cues>

 <cue name="blah">

In this way <cues> node introduces at least one more <cue>. In reality there can be as
many cues as necessary at this level, with sub-cues of any of those also a possibility.

<condition>

So let‟s take a look at the second cue, looking at the conditions first…

1 <cues>

2 <cue name="reset">

3 <condition>

4 <check_all>

5 <cue_is_complete cue="S01M25S00prepare"/>

6 <check_any>

7 <object_exists negate="1" object="S01M25S00prepare.gate"/>

8 <object_exists negate="1" object="S01M25S00prepare.finish"/>

9 </check_any>

10 </check_all>

11 </condition>

1: As just mentioned, we‟re starting a sub-cue with <cues>, so the next tag must be
<cue>.

2: As promised… We‟re going to name this cue „reset‟ for a very good reason, which will
become clear as we progress.

3&11: The open and close tags of the <condition> node.

4&10: <check_all> will check that all of the conditions contained within are met.

Mission Director © Egosoft 2007

Page 21 of 56

5: The first condition which must be met is that the cue named “S01M25S00prepare”,
which you‟ll recall was the name of our top-level cue, has to have been completed, i.e. all
conditions met and all actions performed.

6&9: The <check_any> node nested within the <check_all> will be checked but either of
the conditions within must be met for the actions to be triggered. Consider this nested
condition to equate roughly to „and if either‟.

7&8: We need to check if either the gate or the station, that were the subject of „find‟
commands in the parent cue were actually located. It essentially asks if either the .gate
or the .finish object does not exist. If either of these evaluate as true then the conditions
as a whole are not met. You may be wondering why the objects have the

S01M25S00prepare prefix, where previously they had this; this.blah is a local variable
within the cue it‟s declared. If we need to refer to it in a subordinate cue we substitute
„this‟ for the name of the cue, in which it was declared. If we refer to a local variable in the
parent cue, it‟s also possible to use parent.blah.

<timing> and <action>

Now that we‟ve run the check to see if the top-level cue is complete and if either the gate
or the station were not found there needs to be some action taken. So what are the
consequences of there being either no gate or station. It‟s clear that if neither are found
then our mission won‟t work too well.

 <timing>

 <time min="1s"/>

 </timing>

Again there‟s a fairly straightforward timing node. One second after the conditions have
been met, the action below will be triggered.

 <action>

 <reset_cue cue="S01M25S00prepare"/>

 </action>

 </cue>

Not a huge action node this time, but important given the conditions we had just now. So
now it‟s established that the mission is effectively cancelled because the objects couldn't
be found - the result is that no further attempt to run the mission will be made until the
player changes sector again - only then will the gate and station be searched for once
more. That means that the check for the gate and the station will begin from scratch and
will continue until both have been found.

The </cue> tag after the <action> node means that this is the end of the line for this cue,
there are no more sub-cues. The next cue looks a little tricky as it is very big, but we will
break it down into manageable chunks.

1<cue name="selectOpponent" comment="selecting a random typename to match the

playership">

2 <condition>

 <cue_is_complete cue="S01M25S00prepare"/>

3 </condition>

Mission Director © Egosoft 2007

Page 22 of 56

1: This is the cue name, which with the provided comment suggests the purpose of this
large cue.

2-3: The condition of this cue is simply that the parent cue (S01M25S00prepare) has
completed all of its conditions and actions.

The <action> node of this cue is a whopper, so brace yourself for some heavy stuff.

1 <action>

2 <do_choose>

3 <do_when value="{player.ship.class}" exact="{lookup.class@m3}">

4 <set_value name="selectOpponent.typename"

exact="{lookup.type@{random.type@SS_SH_A_M3|SS_SH_A_M3_1|SS_SH_A_M3_2|SS_SH_

A_M3_3}}"/>

5 </do_when>

6 <do_when value="{player.ship.class}" exact="{lookup.class@m4}">

7 <set_value name="selectOpponent.typename"

exact="{lookup.type@{random.type@SS_SH_A_M4|SS_SH_A_M4_1|SS_SH_A_M4_2|SS_SH_

A_M4_3}}"/>

8 </do_when>

9 <do_otherwise comment="not M3 and not M4 so I'm expecting M5">

10 <set_value name="selectOpponent.typename"

exact="{lookup.type@{random.type@SS_SH_A_M5|SS_SH_A_M5_1|SS_SH_A_M5_2|SS_SH_

A_M5_3}}"/>

11 </do_otherwise>

12 </do_choose>

13 </action>

14</cue>

1&13: The <action> tags here are the easy bit.

2&12: All of the actions in this cue are governed by the <do_choose> sub-node, which
allows you set additional „conditions‟ for the execution of the actions. It also has a loose
sense of „if a=b then do c, otherwise do d‟. We‟ll see how that works.

3&5: The <do_when> sub-cue is framed here, the „condition‟ here is that when the
internal ID for the class of the playership is the same as the look-up value for M3 class.

4: Once the player ship is matched to the M3 class, the typename of the opponent is
assigned a lookup value (an internal ID). Here, we can use the pipe symbol | in the
random.type variable to mean „or‟, resulting in the typename of the opponent being any
one of the four Nova variants selected randomly.

6&8: Similar to 3&5, this time we check if the internal ID of the playership‟s class
matches the lookup value of an M4.

7: This is almost identical to 4, but on this occasion if the playership is an M4, one of the
four Argon M4 Buster variants will be selected as the opponent.

9&11: Instead of <do_when> we have <do_otherwise>, the failsafe clause in case the
other „conditions‟ aren‟t met. Here, if the player ship isn‟t M3 or M4 it must be M5 (we‟ve
already established right at the top that the mission will only work if the playership is a
fighter).

Mission Director © Egosoft 2007

Page 23 of 56

10: One of the four variants of the Argon Discoverer (M5) can be assigned as the
opponent. Note: In all of the <set_value> sub-nodes the internal ID (look-up value) of the
typename for the selected variant is given the name “selectOpponent.typename”. This
variable can then be used when creating the opponent in the following cue.

14: This is the cue being closed; there are no further sub-cues of „selectOpponent‟.

The next cue is on the same level and like its predecessors it is a sub cue of the top-level

cue S01M25S00prepare.

<cue name="createopponent">

As before, we‟ll deal with the cue by node, first of all, looking at the <condition> node.
Probably worthy of note at this stage, in case it goes unnoticed, is that there is no timing
node. This means that the action(s) will be triggered immediately once the conditions
have been met.

1 <condition>

2 <check_all>

3 <cue_is_complete cue="selectOpponent"/>

4 <cue_is_complete cue="S01M25S00prepare"/>

5 <object_exists object="S01M25S00prepare.gate"/>

6 <object_exists object="S01M25S00prepare.finish"/>

7 </check_all>

8 </condition>

The conditions, which must be met in this cue, are similar to the ones we encountered in
the cue before last, called “reset”.

1&8: The condition node tags

2&7: The conditions are encapsulated within a <check_all>, meaning all have to be met.

3: Cue selectOpponent has to have been completed.

4: Cue S01M25S00prepare, our top-level cue, has to have been completed.

5: The gate object we looked for in the top-level cue should have been found and exists.

6. The station object we looked for in the top-level cue should have been found and
exists.

So, all being well, we‟ve selected an opponent, the preparatory location of a gate and a
station were completed and we‟ve checked that those two actually exist as game objects,
we can now proceed with the business suggested by the cue‟s name, creating the ship
against which the player will race.

Warning! There‟s a lot of action in this next part, so if you need coffee or popcorn, you‟d
best grab it now. 

Mission Director © Egosoft 2007

Page 24 of 56

As we mentioned just before, there‟s no <timing> node, so it‟s straight into the action in
this cue.

1<action>

2 <do_all>

3 <create_ship name="this.opponent" typename="{value@selectOpponent.typename}"

racelogic="0" race="argon" class="{player.ship.class}" highlight="1">

4 <position min="5km" max="6km" object="S01M25S00prepare.gate"/>

5 <equipment loadout="default"/>

6 <command command="follow" commandobject="{player.ship}"/>

7 <pilot name="{random.pilot.argon}" race="argon"/>

8 </create_ship>

9 <set_value name="this.tunings"

exact="{player.ship.maxspeed}/({object.basespeed@this.opponent}/10)-10"/>

10 <add_equipment object="this.opponent">

11 <ware typename="SS_WARE_TECH213" exact="-100" comment="removing all engine

tunings as a workaround"/>

12 <ware typename="SS_WARE_TECH213" min="{value@this.tunings}-1"

max="{value@this.tunings}+1" comment="Engine Tunings"/>

13 </add_equipment>

14 <do_if negate="1" value="{object.class@this.opponent}" exact="{lookup.class@m5}"

comment="M5 ships can't carry jumpdrives, so don't try to add it">

15 <add_cargo object="this.opponent">

16 <ware typename="SS_WARE_ENERGY" min="15" max="50" comment="Energy Cells"/>

17 </add_cargo>

18 <add_equipment object="this.opponent">

19 <ware typename="SS_WARE_WARPING" exact="1" comment="Jumpdrive"/>

20 </add_equipment>

21 </do_if>

22 <ask_question name="bet" author="{object.pilot@this.opponent}" text="{1081,1}"/>

23 </do_all>

24</action>

Easy ones first:

1&24: Our <action> node tags.

2&23: <do_all> sub-node tags meaning that the actions in lines 3-22 will all be done.

3&8: We want to use <create_ship> and its sub-nodes to give us our opponent.
Attributes that we can specify on this line include a name, in this case ‘this.opponent’. We
can also specify a typename, an internal code specifying which model will be used in the
game. In this instance, we‟re using a value which was specified in the selectOpponent
cue. Racelogic is set to 0, meaning that upon creation it won‟t wander off thinking it‟s a
normal race ship, in this case an Argon one of the same „class‟ as the player‟s ship. This
ship, with highlight=”1”, will appear highlighted underneath the player‟s assets on the
sector map.

4: The ship we‟re creating will spawn in a position somewhere between 5 and 6km from
the gate object that we found in the top-level cue. Note once more that instead of

this.gate, as it was declared as in that cue, we‟re referring to it as S01M25S00prepare.gate
so that the code knows where to look to find where the object was declared in order to
use it.

Mission Director © Egosoft 2007

Page 25 of 56

5: Here we want to install some equipment on the opponent‟s ship, we can specify a
general load-out for the ship, in this case „default‟, but specific items of equipment can be
installed using the <ware> sub-node. There are three different types of „loadout‟:

- minimum (one 1MW shield, one set of lasers - usually front turret, no missiles, only
basic upgrades, no speed/rudder/cargo upgrades)

- default (max shields with a small chance of something less, max lasers with a
small chance of something unusual, some missiles and a variety of equipment)

- maximum (max shields, max weapons with a higher chance of something unusual,
max missiles and a variety of equipment similar to „default‟)

6: As part of the <create_ship> node we can give our ship a command to carry out as
soon as it has been spawned, in this case it should “follow” the player ship (the
commandobject).

7: Next we use the <pilot> sub-node to set the pilot‟s name, in this case we‟re using a
variable to find a randomised Argon name, but a text string or TextID would also suffice.
Also here we can set the race of the pilot to Argon. Note that this is the race of the pilot,
as distinct from the race of the ship.

9: This sets the value of the variable {this.tunings} to the result of the calculation given in
value=””. That is the player‟s maximum speed divided by a tenth of the opponent‟s base
speed minus 10. This number can then be used as a multiplier when adding tunings to
the opponent‟s ship.

10&13: Here we have a separate <add_equipment> sub-node. The aim of this is to add
equipment to the „opponent‟ using the value we have just set in 12.

11: This <add_equipment> node will remove 100 engine tunings from the opponent‟s
ship, with a view to adding more in just a second. This should in theory remove any
tunings the opponent ship has installed.

12: This <add_equipment> node then adds an amount of engine tunings somewhere

between {value@this.tunings}-1 and {value@this.tunings}+1.

14&21: Here we‟re going to use a <do_if> sub-node. The negate=”” is used to check
that a condition or action is not true; in this case, if the internal ID of the opponent does
not match the look-up value for an M5 ship. As the comment suggests, if the ship is an
M5 then it can‟t be fitted with a jumpdrive, so the actions contained in the <do_if> should
only be carried out on M3 or M4 ships.

15-17: In the <add_cargo> sub-node we‟re adding between 15 and 50 energy cells to the
opponent‟s ship.

18-20: In this <add_equipment> sub-node, we‟re adding a single jumpdrive to the
opponent‟s ship. This equipment isn‟t part of the race, it‟s just so the opponent can
„disappear‟ as required.

22: The final action in this cue is an <ask_question> sub-node. The question is given a
name, by which it will be known in subsequent sub-cues. The question will appear as an
incoming message of whichever type is specified; so it has an author, in this case the
name of the pilot of the this.opponent ship we created. Then follows the text of the

Mission Director © Egosoft 2007

Page 26 of 56

question. In this case we are using a TextID, but it could as easily be a text string.
Almost all official mission text will be placed in the Text Database, so reference to TextIDs
will be more common than text strings. Text used should also be as brief as possible.

Phew! So now we have created our opponent and asked him a question. To get a better
idea of what will come next, let‟s take a quick look at the question:

This is {object.pilot@createopponent.opponent} of the Argon. I've seen you have a
fast ship!\nShall we bet for {value@S01M25S00prepare.reward} credits I can dock

at the {object.name@S01M25S00prepare.finish}, the large station in the middle of

this sector, before you can?

[center][select value='yes']You're on![/select][/center]

[center][select value='no']No thanks![/select][/center]

There are a few variables in there. {object.pilot@createopponent.opponent} is the
name of the pilot of the ship created as this.opponent; it‟s now using the cuename rather
than „this.‟ so that the code can properly locate the variable.
{value@S01M25S00prepare.reward} was declared earlier in the top-level cue with
{object.name@S01M25S00prepare.finish}, both of which show their cuename origin in
the variable. So the object formerly known as this.opponent of the Argon wants to bet
that he can beat you to the station we originally called „this.finish‟.

The use of the <ask_question> node requires there to be at least one sub-cue, but
normally two – one each for a „yes‟ and „no‟ answer. Each of those sub-cues will check if
the „yes‟ or „no‟ answer has been selected and then perform a further action based on that
selection. So let‟s now look at what happens in response to this.opponent‟s challenge.

As the answer is going to be a sub-cue of the question‟s cue the next line of code will be
<cues> directly following the <action> node of the parent cue. After that, follows the cue
name.

</action>

<cues>

 <cue name="noBet">

As expected, the condition of this sub-cue will be to check one of the answers of the
question posed in the parent cue.

<condition>

 <question_answered question="bet" answer="no" />

</condition>

Note that the question=”” attribute has “bet” in, which is the name we assigned to the
question in the previous cue. So this condition is checking if the answer to the question
„bet‟ was no, if so the cue will perform the following action:

<action>

 <do_all>

 <incoming_message author="{object.pilot@createopponent.opponent}"

text="{1081,9}"/>

 <cancel_cue cue="closetoplayer"/>

 </do_all>

</action>

Mission Director © Egosoft 2007

Page 27 of 56

text="{1081,9}" is “I should have known that someone who flies such a rustbucket

is not up for a challenge - get that junk out of my sight!”

This cue is fairly straightforward in comparison to the last cue; the actions in this cue send
a message to the player, as displayed above and also cancel the cue that follows it.
Note that cancelling a cue also cancels any sub-cues. As it happens, the cue that is
cancelled is the cue, which is the „yes‟ answer to the challenge. So answering „no‟
effectively ends the mission, as one would expect. Before we get to that cue, there is
another small matter to attend to.

<cues>

 <cue ref="clean up">

 <params>

 <param name="time" value="10s"/>

 </params>

 </cue>

</cues>

This very small cue, wrapped neatly in <cues> tags, is a sub-cue of „no bet‟ and directly
follows the </action> tag of the previous cue. As we saw earlier the ref=”” attribute is
used to refer to a library cue. So, later in our mission file we will have another library cue
called „clean up‟. The purpose of this „clean up‟ library cue is to tactfully remove our
unwanted opponent from the game once the player has answered „no‟. We‟ll look at how
this is achieved in greater detail once we‟ve reached the „clean up‟ cue. The purpose of
the <params> node and its <param> sub-node is to provide a specific value for that
library cue to use in this instance. Each time the „clean up‟ cue is referenced, differing
parameters can be supplied as required. A more detailed explanation of how <params>
work is available in Appendix 2: Library Cues.
The next cue, like „no bet‟ is a sub-cue of „createOpponent‟ and not the previous one, so
in order to make that distinction we must first end the „no bet‟ cue using </cue>…

</cue>
<cue name="closetoplayer">

This is the cue that gets cancelled (along with all its sub-cues) if the player answers no.
For now we need to be optimistic and hope the answer is yes. As we saw with „no bet‟,
the condition is simply checking to see if the answer to the question is „yes‟.

<condition>

 <question_answered question="bet" answer="yes" />

</condition>

Unlike „no bet‟ this cue has a <timing> node, waiting between 1 and 3 seconds before the
actions are triggered:

<timing>

 <time min="1s" max="3s"/>

</timing>

Next, the action bit:

Mission Director © Egosoft 2007

Page 28 of 56

<action>

 <do_all>

1 <incoming_message author="{object.pilot@createopponent.opponent}"

text="{1081,2}" popup="1"/>

2 <create_object name="this.marker" typename="SS_SPECIAL_MARKER"

class="special">

 <position min="3km" max="5km" object="{player.ship}"/>

 </create_object>

3 <set_target object="this.marker"/>

4 <set_command object="createopponent.opponent" command="moveposition"

commandobject="this.marker">

 <position object="this.marker"/>

 </set_command>

 </do_all>

</action>

Here we have a bunch of actions all wrapped up in <do_all> tags. From this point we‟ll
just number the action (and condition) lines, assuming you‟re now comfortable with the
formation of the major node types like <cues>, <cue>, <condition>, <timing>, <action>
and <do_all/any>.

1: First up is a message from our opponent, this time it‟s a popup message, meaning that
rather than being received as an incoming message, with the accompanying sound, this
message will just „pop up‟ on the screen. The message is “Excellent! I will switch off

my friend/foe signal so you can see me as a red dot on the radar. Convenient,

huh?! Don't shoot me, I'm not the enemy! Please fly to the marked coordinates. You

need to be within 200m of the marker!”

2: Next we‟re creating a marker, representing the start point and we‟ll call it „this.marker‟.
Remember: if this object should appear in other cues, it will be called
„closetoplayer.marker‟. We scroll down the typename „lookup‟ list to find the correct one,
and similarly the class is also „special‟. In a sub-node of <create_object> we can specify
an approximate position for the marker. It should appear between 3 and 5km away from
the player ship.

3: Next we use the <set_target> node to set the player‟s target as the marker we‟ve just
created. Note that because we‟re still in the same cue, the marker is still called
„this.marker‟.

4: Here, using <set_command>, we‟re telling the opponent ship to move to the marker.
Specifying the marker as the commandobject and in the <position> sub-node will ensure
the ship gets to the right location.

So, to recap on what‟s happened in our mission so far, we‟ve identified a station (the
destination) and a gate from which (approximately) the race will start. If both are found to
exist, then an opponent with speed that roughly matches the player‟s will be spawned and
will issue a challenge to race the player to the destination station. If the player says „no‟,
the opponent throws a rebuke at the player and disappears and no more is said. If the
player says „yes‟ a marker, to which the player and opponent fly, is created.

As was suggested earlier, all of the mission elements that flow from having answered
„yes‟ to the challenge should be sub-cues of that particular cue and if the cue was
cancelled as a result of the answer being „no‟ then none of them would happen. As we‟re

Mission Director © Egosoft 2007

Page 29 of 56

still looking on the bright side of life, we can move on to the next sub-cue, in which we‟ll
see what happens if the player develops a yellow streak.

For a change, let‟s look at the cue as a whole:

<cues>

 <cue name="coward">

 <condition>

 <check_all>

 <object_changed_sector/>

 </check_all>

 </condition>

 <timing>

 <time min="1s"/>

 </timing>

 <action>

 <do_all>

 <incoming_message author="{object.pilot@createopponent.opponent}"

text="{1081,114}" popup="1"/>

 <destroy_object object="closetoplayer.marker"/>

 <cancel_cue cue="inposition"/>

 </do_all>

 </action>

In doing so, we can see its structure clearly, the condition, the timing and the action
nodes. The condition node has a <check_all> which isn‟t strictly needed, as there‟s only
one condition. It helps to have it there in case any other conditions need to be added
later. The condition <object_changed_sector> refers, if no other object is specified, to the
player. So if the player leaves the sector for whatever reason, the action will be triggered
after the gap of one second specified in the timing node. The action node, in this case,
contains three actions. First the opponent sends a message to the player “Coward! I've

seen you leaving the sector. The bet is off!”
Then, using <destroy_object>, the marker is removed from the game (note the cuename
use in the object name). Finally, the cue „inposition‟ is cancelled, along with its sub-cues.

If you‟re wondering, at this stage, how the mission could run with so many cues being
cancelled or reset, you should bear in mind that the game engine is scanning through all
the XML mission files every second. The scan filters through the cues from the top-level
downwards, checking that each condition has been met. If a condition is not met then it
will continue to check the next cue down and so on until the end of the file. This can
mean that if you don‟t cancel a cue once it and its sub-cues are no longer needed their
conditions could still continue to be met and actions carried out once you think the
mission is over.

The next cue is a sub-cue of „coward‟. It is another short one.

 <cues>

<cue ref="clean up" comment="10 seconds from now the opponent will jump to

another sector where it will be destroyed"/>

 </cues>

</cue> <- this is the „coward‟ clue being closed

As we had before, a cue with a ref=”” attribute and this time we‟re „calling‟ the „clean up‟
library cue again. The comment provided in the code adequately describes what we‟re

Mission Director © Egosoft 2007

Page 30 of 56

trying to achieve in this cue. You‟ll notice that there is an additional </cue> at the end.
This is because we are ending the „coward‟ cue and the next cue will be a new cue at the
same level as „coward‟, a sub-cue of „closetoplayer‟.

<cue name="opponentready" comment="we shouldn't need this cue but the current

Flight AI does">

 <condition>

 <check_all>

1 <cue_is_complete cue="closetoplayer"/>

2 <object_position object="createopponent.opponent" max="200m">

 <position object="parent.marker"/>

 </object_position>

 </check_all>

 </condition>

 <action>

3 <set_command object="createopponent.opponent" command="none"/>

 </action>

</cue>

In the <condition> node of this cue we are checking:

1: that the actions of the parent cue „closetoplayer‟ are complete (even though it‟s not
directly following, this cue is still a sub-cue of it) and

2: that the object „opponent‟ is no more than 200m from the object „marker‟. Note here
it‟s referred to as „parent.marker‟ meaning that the object „marker‟ is declared in the
parent cue, it could just as easily be described as „closetoplayer.marker‟. Both would
evaluate correctly. So once both of those conditions are met the action will be triggered.

3: is the action that will be triggered. In this instance, we are giving the object „opponent‟
the command to stop where he is, using the command „none‟

Mission Director © Egosoft 2007

Page 31 of 56

The following cue, once more is on the same level as the last and a sub-cue of
„closetoplayer‟. This time, instead of checking the opponent‟s position relative to the start
„marker‟, we‟re going to check both the player‟s and the opponent‟s position relative to the
starting position.

<cue name="inposition">

 <condition>

 <check_all>

1 <cue_is_complete cue="closetoplayer"/>

2 <object_position object="createopponent.opponent" max="200m">

 <position object="parent.marker"/>

 </object_position>

3 <object_position max="200m">

 <position object="parent.marker"/>

 </object_position>

 </check_all>

 </condition>

 <action>

 <do_all>

4 <incoming_message author="{object.pilot@createopponent.opponent}"

text="{1081,8}" popup="1"/>

5 <set_command object="createopponent.opponent" command="none"/>

6 <set_relation object="createopponent.opponent">

 <relation relation="enemy" relationobject="{player.ship}"/>

 </set_relation>

7 <set_target object="S01M25S00prepare.finish"/>

 </do_all>

 </action>

Just like the preceding cue, we‟re checking

1: that all of the actions in „closetoplayer‟ have been completed.

2: We again check the opponent‟s position relative to the start marker; within 200m.

3: We are checking the player‟s position relative to the marker, no more than 200m, just
like the opponent. Once those conditions are met, all of the following actions are
triggered:

4: The player receives a pop-up message from the opponent “Good, you are in position

- starting the countdown...”

5: We tell the opponent to stop where he is, using the command „none‟.

6: We then set the relation of the opponent, using the <set_relation> sub-node, to enemy
in relation to the object {player.ship}. This is consistent with the message the player
received in the parent cue regarding the opponent switching off his friend/foe signal.

7: The final action of this cue is to set the player‟s target to the station we set right at the
beginning as the „finish‟.

You‟re possibly wondering why the opponent‟s position was checked twice in separate
cues. In the first one, we‟re getting the opponent ship to hold station if it‟s within 200m of
the marker. It may be possible that the opponent‟s ship may arrive in position before the
player. In this case it will simply stop and wait. If, however, the opponent arrives inside

Mission Director © Egosoft 2007

Page 32 of 56

that 200m area at about the same time as the player then a different set of actions will be
triggered.

The message passed to the player above gives a clue to what we‟ll do in the next cue,
which is a sub-cue of „inposition‟. We‟re going to perform a countdown:

<cues>

 <cue name="countdown" comment="count down from 4 to 1">

 <condition>

1 <cue_is_complete cue="inposition"/>

 </condition>

 <timing>

2 <count exact="4"/>

3 <time min="2s"/>

4 <interval exact="1s"/>

 </timing>

 <action>

 <do_all>

5 <set_value name="this.counter" exact="5-{index@this}" comment="can't

compute the number in the text attribute, so make it a value first"/>

6 <play_subtitles author="{object.pilot@createopponent.opponent}"

text="{value@this.counter}!"/>

7 <play_sound soundid="924"/>

 </do_all>

 </action>

 </cue>

While it may look a bit tricky, this sub-cue is fairly straightforward.

 1: The condition here is the easiest bit by far, we‟re just checking if the actions of the
parent cue, „inposition‟, have been completed. One that condition is met we have the
<timing> node to consider. This is the first time we have encountered <timing> node
containing, <count>,<time> and <interval>.
Let‟s look at these elements individually:

2: <count exact="4"/> means that the actions contained in the <action> node will be
carried out exactly four times.

3: <time min="2s"/> means, as before, that the actions (the first iteration, in this case)
will be carried out at least two seconds after the condition is met.

4: <interval exact="1s"/> means that each iteration of all the actions being completed
will happen at exactly one second intervals.

When it now comes to the actions, it‟s important to remember that they‟re being repeated
at one second intervals, especially so when looking at the <set_value>. Again for the
sake of clarity, we‟ll take a look at the actions individually.
5: Here we‟re giving the value name „this.counter‟ a value of 5 minus {index@this}. What
this means is that for each time the actions are read (according to the <count> sub-node,
four times), {index@this} is replaced by a number starting at one and rising each time. In
this way, in each iteration, the value of „this.counter‟ decreases from 4 to 3, to 2 and to 1
(i.e. 5-1, 5-2, 5-3 and 5-4). As the comment suggests, we can‟t put this calculation in the
text field of the next action, so we ascribe it a value here and then use the value in the
text field.

Mission Director © Egosoft 2007

Page 33 of 56

6: Here we are displaying a subtitle on the screen displaying the value of „this.counter‟,
described above. In each iteration of the actions the subtitle should read “4”, “3”, “2” and
then “1”.

7: Accompanying each iteration and countdown number appearing on the screen, the
game will play sound ID „924‟ (Alert). In this way the player gets an audible countdown
signal as well as the visual subtitled countdown.

That then is the end of that cue and there are no sub-cues of that. The next cue is
another sub-cue of „inposition‟, where the player‟s position relative to the marker was
checked. In this cue, if the player tries to get a head-start then it‟s all over.

<cue name="headstart">

 <condition>

 <check_all>

1 <cue_timer cue="inposition" min="3s" max="6s"/>

2 <object_position min="220m">

 <position object="closetoplayer.marker"/>

 </object_position>

 </check_all>

 </condition>

 <action>

 <do_all>

3 <incoming_message author="{object.pilot@createopponent.opponent}"

text="{1081,16}" popup="1"/>

4 <destroy_object object="closetoplayer.marker"/>

5 <cancel_cue cue="countdown"/>

6 <cancel_cue cue="coward"/>

7 <cancel_cue cue="go"/>

 </do_all>

 </action>

1: The <cue_timer> condition evaluates the elapsed time, for which a cue has been
active. In this case we are checking that the „inposition‟ cut has been running for between
3 and 6 seconds.

2: Next we check to see if the player‟s position is at least 220m away from the marker.
Remember that if no object position is specified in the <object_position> sub-node then
the game will assume it is the playership object.

So here‟s what happens if we try to get a run on the opponent.

3: For trying to cheat the opponent out of his money the player gets the following
message, “You honourless cheater! I've seen exactly that you tried to get a

headstart. The bet is off!”

4: We destroy the marker, the „start point‟ of the race. It is removed from the game.

5-7: The cues „countdown‟, „coward‟ and „go‟ and all of their sub-cues are cancelled.
This effectively stops the mission from continuing.

In the next cue, a sub-cue of „headstart‟, we‟re once more referencing the „clean up‟
library cue, which will conveniently dispose of any game elements created for the mission.

Mission Director © Egosoft 2007

Page 34 of 56

 <cues>

 <cue ref="clean up" comment="10 seconds from now the opponent will jump to

another sector where it will be destroyed">

 <params>

1 <param name="time" value="10s"/>

 </params>

 </cue>

 </cues>

</cue> <- This is closing the „headstart‟ cue.

We‟ve seen this cue before, using the same time parameter [1]. We‟ll come back and
look at this „clean up‟ cue when we come to the library cue of the same name.

So, finally we get to see the intrepid pilots start this race.

<cue name="go">

 <condition>

1 <cue_is_complete cue="inposition"/>

 </condition>

 <timing>

2 <time min="7s"/>

 </timing>

 <action>

 <do_all>

3 <play_subtitles author="{object.pilot@createopponent.opponent}"

text="{1081,10}"/>

4 <play_sound soundid="923"/>

5 <set_command object="createopponent.opponent" command="dock"

commandobject="S01M25S00prepare.finish"/>

6 <destroy_object object="closetoplayer.marker"/>

 </do_all>

 </action>

1: The actions will only trigger if the „inposition‟ cue has been completed. It‟s pretty
logical that they should be properly positioned before the race can begin properly.

2: The actions of this cue will be triggered seven seconds after the conditions are met.

3: The first of the actions is the playing of a subtitle on behalf of the opponent which
simply displays „GO!‟

4: Again we hear the „alert‟ sound (sound ID 923) to signify the start signal.

5: At the same time as the sound and subtitle occur, the opponent is given the command
to dock at the station we earlier defined as being the „finish‟ destination.

6: Just by way of tidying up, the starting marker is removed from the game, since it‟s no
longer needed.

Mission Director © Egosoft 2007

Page 35 of 56

The next cue is a sub-cue of „go‟.

<cues>

 <cue name="annoyme">

 <condition>

1 <cue_is_complete cue="go"/>

 </condition>

 <timing>

2 <count min="3" max="6"/>

3 <time min="30s" max="60s"/>

 </timing>

 <action>

 <do_all>

4 <set_value name="this.txtid" min="21" max="40"/>

5 <incoming_message popup="1" temporary="1"

author="{object.pilot@createopponent.opponent}"

text="{1081,{value@this.txtid}}"/>

 </do_all>

 </action>

6 </cue>

1: A simple condition to check whether the action(s) of the parent cue, „go‟, has been
completed.

2: The count here means that the actions will be carried out 3 to 6 times. The number is
random.

3: At a random time between 30 and 60 seconds after the race starts the actions will be
triggered.

4: Here we are setting the value of „this.txtid‟ to between 21 and 40, again the actual
number is random. So each time this line is read it will assign any number in that range
to the value.

5: The net result of the <timing> node and the setting of the „this.textid‟ value is that we
can send the player a pop-up message about 30-60 seconds after the start, selected
randomly in each of three to six iterations from a range of messages (text IDs 21-40) held
in the Text DB (Page 1081). The messages are marked as „temporary‟, meaning that
they will not be stored in the player log. Note the use in the text=”” attribute of the value
we assigned in 4.

Mission Director © Egosoft 2007

Page 36 of 56

That‟s the end of that cue, but there is another sub-cue of „go‟.

<cue name="winner">

 <condition>

 <check_all>

1 <object_is_docked dockobject="S01M25S00prepare.finish"/>

2 <object_is_docked dockobject="S01M25S00prepare.finish"

object="createopponent.opponent" negate="1"/>

 </check_all>

 </condition>

 <action>

 <do_all>

3 <cancel_cue cue="loser"/>

4 <cancel_cue cue="coward"/>

5 <cancel_cue cue="annoyme"/>

6 <play_sound soundid="1007"/>

7 <incoming_message author="{object.pilot@createopponent.opponent}"

text="{1081,3}" popup="1"/>

8 <set_relation object="createopponent.opponent">

 <relation relation="friend" relationobject="{player.ship}"/>

 </set_relation>

9 <reward_player>

 <money exact="{value@S01M25S00prepare.reward}"/>

 </reward_player>

 </do_all>

 </action>

Let‟s deal with the conditions, 1 and 2 together. What it‟s saying here is that if the player
is docked at the „finish‟ station and the opponent is not docked there, then the actions will
trigger. The negate=”1” is checking if the condition is not true.

So, if those two conditions are met, there are few actions we need to happen.

3-5: The cues „loser‟, „coward‟ and „annoyme‟ and their sub-cues are cancelled.

6: The sound „1007‟ is played ((unused) DING DA DONG station announcement variation 2)

7: The player receives a pop-up message from the opponent saying „This is

{object.pilot@createopponent.opponent} of the Argon. You win! Transferring

{value@S01M25S00prepare.reward} Credits now.Let’s have a drink at the bar!’

8: Our next step is to reset the relation of the opponent to the player; as you will recall,
we set him to „enemy‟ status for the race. So now, a good loser, he‟s our friend again…..

9: …so much so, he wants to give us our winnings. The value stated is referring back to
the „this.reward‟ declared in the S01M25S00prepare cue.

Mission Director © Egosoft 2007

Page 37 of 56

Of course that‟s what happens if the player wins. If the player fails to beat the opponent
to the station then the next step is to look at the conditions in which the player loses… but
first, it‟s „clean up‟ time again.

 <cues>

 <cue ref="clean up" comment="5 minutes from now the opponent will jump to another

sector where it will be destroyed">

 <params>

 <param name="time" value="5m"/>

 </params>

 </cue>

 </cues>

</cue> <- The „winner‟ cue is closed with this tag.

As in previous occurrences of the „clean up‟ library cue this will neatly dispose of our
mission components, although on this occasion the time parameter is set to a value of 5m
(minutes). Now to the „loser‟ cue:

<cue name="loser">

 <condition>

 <check_all>

1 <object_is_docked dockobject="S01M25S00prepare.finish" negate="1"/>

2 <object_is_docked dockobject="S01M25S00prepare.finish"

object="createopponent.opponent"/>

 </check_all>

 </condition>

 <action>

 <do_all>

3 <cancel_cue cue="winner"/>

4 <cancel_cue cue="coward"/>

5 <cancel_cue cue="annoyme"/>

6 <play_sound soundid="1007"/>

7 <incoming_message author="{object.pilot@createopponent.opponent}"

text="{1081,4}" popup="1"/>

8 <set_relation object="createopponent.opponent">

9 <relation relation="friend" relationobject="{player.ship}"/>

 </set_relation>

 <reward_player>

10 <money exact="-{value@S01M25S00prepare.reward}"/>

 </reward_player>

 </do_all>

 </action>

 <cues>

11 <cue ref="clean up" comment="5 minutes from now the opponent will jump to another

sector where it will be destroyed">

 <params>

 <param name="time" value="5m"/>

 </params>

 </cue>

 </cues>

 </cue> <- This tag closes the ‘loser’ cue.

At first glance there doesn‟t appear to be much difference between the „winner‟ cue and
this one. Note also the „loser‟ cue is also followed by the „clean up‟ library cue [11], using
the same time parameter as above.

1&2: Very similar to the conditions of the previous „winner‟ cue, this time it‟s the check of
the player having docked that is negated. At the same time the opponent‟s ship is

Mission Director © Egosoft 2007

Page 38 of 56

checked that it‟s docked. So, if the opponent gets there first the actions of this cue are
triggered.
3-6: Almost exactly the same as the „winner‟ cue, but the „winner‟ cue is cancelled
instead, along with the „coward‟ and „annoyme‟ cues (and their sub-cues). Also the sound
triggered in „winner‟ is played.

7: Again like „winner‟ an incoming pop-up message is sent by the opponent to the player,
but as you can imagine, the content is slightly different this time:
“This is {object.pilot@createopponent.opponent} of the Argon. That was close but I

WIN. I'm the greatest, the Fastest and the Meanest! Where’s the money!? Let me
buy you a drink in the bar.”

8&9: Like in „winner‟, we now set the relation of the opponent back to friend.

10: In this <reward_player> node, we‟re doing the opposite of what we did in „winner‟; the
player has lost the bet, so must pay up. That‟s why at the beginning we checked that the
player has enough money to pay the bet and have 500Cr to spare.

Take a deep breath now and give yourself a pat on the back for making it this far. That‟s
now the bulk of the mission finished. There‟s a little tidying up to be done and also we‟ll
be taking a look at that library cue mentioned several times earlier. The crucial thing to
remember about library cues is that they must be situated above or on the same level as
the cues that refer to them. It‟s important to remember that „above‟ here means in the cue
structure rather than „above‟ in the file structure. So although the library cues come right
at the bottom of the file, they are above or at the same level as the <cue ref=”blah”> that
are referring to them. So to make sure we are placing the library cues in this file above
those particular cues, we must close any cues that are in between.

 </cue> <- This tag is closing the „go‟ cue.
 </cues>

 </cue> <- This tag is closing the „inposition‟ cue.
 </cues>

 </cue> <- This tag is closing the „closetoplayer‟ cue.
 </cues>

</cue> <- This tag is closing the „createopponent‟ cue.

So with those four cues closed we‟re now back up at the same level as the „reset‟,
„selectOpponent‟ and „createopponent‟ cues. This is where we want to put the library cue we‟ve
already referred to.

Mission Director © Egosoft 2007

Page 39 of 56

Now for the finale, as far as this mission is concerned… thankfully the last blocks of code for this
mission. The library cue „clean up‟ sits at the same level as the „selectOpponent‟ and
„createopponent‟ cues and consists of a single cue with two sub-cues.

1<cue name="clean up" library="1">

 <timing>

2 <time min="{param@time}"/>

 </timing>

 <action>

 <do_all>

3 <find_sector name="this.jumpsec" exact="1"/>

4 <find_gate name="this.jumpgate" nearest="1">

 <sector sector="this.jumpsec"/>

 </find_gate>

5 <set_command object="createopponent.opponent" command="jumpsector"

commandobject="this.jumpgate">

 <sector sector="this.jumpsec"/>

 </set_command>

 </do_all>

 </action>

1: To make a cue a library cue, and to ensure it‟s not parsed we have the library=”1” attribute.
We also give it the name „clean up‟; this, of course, is the name we used in the ref=”” attribute in
order to refer to the library cue and get it into action.

2: The time specified here {param@time} will use the time specified in the referencing cue.

3: Next we‟ll look for a sector exactly one jump away from our current one and call it
„this.jumpsec‟.

4: Then we‟ll find a gate in the sector we‟ve just found and call it „this.jumpgate‟.

5: Finally, in this cue, we give the opponent the command to jump to that sector using the gate
we just found.

Mission Director © Egosoft 2007

Page 40 of 56

 <cues>

 <cue name="destroy opponent">

 <condition>

1 <object_changed_sector object="createopponent.opponent" />

 </condition>

 <timing>

2 <time min="1s"/>

 </timing>

 <action>

 <do_all>

3 <destroy_object object="createopponent.opponent" />

 </do_all>

 </action>

 </cue>

1: If the opponent changes sector (which it should, as we‟ve just told it to) the condition is met.

2: One second after the opponent has changed sector…..

3: …he is destroyed in a big puff of pixels.

It‟s not over quite yet. The cuename and comment give it away a little

 <cue name="restart" comment="make the mission available again">

 <timing>

1 <time min="1h"/>

 </timing>

 <action>

2 <reset_cue cue="S01M25S00prepare"/>

 </action>

 </cue>

 </cues>

 </cue> <- This is „clean up‟ library cue being closed
</cues>

1: One hour after the opponent is destroyed (note that no conditions have to be met)…

2: the mission‟s top-level cue is reset and it all starts all over again.

Just the loose ends to tie up then… the very last tags in our mission file should be the opposite
of the very first </cue>, </cues> and </director>.

So there we have it. One whole functioning mission.

 </cue> <- This is „S01M25S00prepare‟ being closed
 </cues>

</director>

Mission Director © Egosoft 2007

Page 41 of 56

If we were to visualise the structure of this mission, in a hierarchical tree structure it should look
something like this:

As your mission progresses, keep a pencil and paper handy to draw a similar diagram of what
your mission looks like. This will help you to remember relationships and where to insert new
mission content, if required. Having a visualisation of what your mission is doing is very useful.

S01M25S00

prepare

reset
create

opponent
clean up

No bet closetoplayer

inposition
opponent

ready
Coward

goHeadstart countdown

annoymewinnerloser

select

Opponent

Mission Director © Egosoft 2007

Page 42 of 56

BBS MISSION-WRITING TUTORIAL

In the same way that we looked at an in-space mission, we should examine how to write
a BBS mission, as there are some marked differences in the structure. A BBS template
file is provided with the Mission Director documentation and is located in the samples
folder, within the director folder. The essential elements of a BBS-based mission
structure are contained in that file. It is worth studying this format and experimenting with
the file before beginning your own mission.

First, we‟ll start with the header and documentation. This should have the same structure
as any mission:

<?xml version="1.0" encoding="iso-8859-1" ?>

<?xml-stylesheet href="director.xsl" type="text/xsl" ?>

<director name="BBSTemplate" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="director.xsd">

 <documentation>

 <author name="Fred Bloggs" alias="Froggs" contact="Froggs@egosoft.com"/>

 <content name="Lottery BBS" description="BBS-based lottery mission"

reference="B01M47S00_XXXT"/>

 <version date="29 May 2007" number="1.0" status="Beta Test"/>

 </documentation>

As with our previous mission, it‟s essential that cue names are unique in order to avoid
conflicts with other missions. It is suggested that cues are prefixed with a unique mission

reference, for example: B01M47S00MainCue

<cues>

1 <cue name="B01M47S00LotteryMainCue" comment="This is the top-level cue, the start

point for our quest">

 <condition>

2 <check_age value="{player.age}" min="5s" comment="Conditions to determine

when, or where, or under what circumstances your BBS Mission should appear"/>

 </condition>

 <action>

3 <do_all>

4 <add_bbs_quest name="B01M47S00Lottery" priority="500" max="1"

comment="Priority= How often your quest should occur on a scale of 0-100.

Max= Max amount of the same quest per station"/>

 </do_all>

 </action>

1: This is the introduction of our top-level cue, with a unique mission reference prefix and
an appropriate comment. I have used the template, so you can see what each major
element is doing.

2: The condition of this quest is currently a „debug‟ one; this means that for testing
purposes the action will be carried out after 5 seconds of player game time. Other
conditions can of course be used to trigger a BBS mission.

3: Although there is only one action, a <do_all> has been used, just in case a further
action is required at a later stage.

Mission Director © Egosoft 2007

Page 43 of 56

4: The action here is the most important one for the BBS mission. <add_bbs_quest>, as
the name suggests, adds the quest to the pool of quests available to the BBS quest
engine. The priority is the criterion, by which the quest engine will decide how often your
quest will appear on BBS. The scale is technically 0-100 although using a priority of 500
will guarantee that the mission appears for testing purposes. Max determines the number
of times your quest will be offered at the same station. Normally this is once.
The next cue is a sub-cue of the top-level cue and here we will see what happens to our
quest, once it is added.

<cues>

1 <cue name="B01M47S00Lottery Mission Offer" instantiate="static" comment="This will

offer the Lottery Mission to the player">

 <condition>

2 <bbs_quest_evaluated quest="B01M47S00Lottery" comment="Will evaluate your quest

by its given priority and max you set above"/>

 </condition>

 <action>

3 <offer_bbs_quest quest="B01M47S00Lottery" author="Spamelot Lottery"

text="[center]Would you like to buy a lottery ticket and win more than a

guaranteed 1,000,000Cr?\n\nThey cost only 1,000Cr!\n\n[select value='yes']You

bet![/select]\n[select value='no']Forget it![/select][/center]"/>

 </action>

1: This cue is a sub-cue of the top-level cue. Remember that <cues> directly following
</action> indicates a sub-cue. This is the cue, in which the BBS quest will be offered at
stations. „instantiate=”static”‟ means that a copy of this cue is created and the player will
play the copy. Other copies will be available still at other stations. A detailed explanation
of instantiation is available in Appendix 1: Instantiation.

2: Here, as a condition, we are telling the game to check if the quest has met the priority
and max criteria we set in the parent cue. If those criteria are met then the action is
triggered.

3: Next, the quest is offered in a station. Here we state the author and provide the text of
the quest offer (of course in an official mission we should be using textIDs). So, for
1,000Cr we can win at least a million…

Mission Director © Egosoft 2007

Page 44 of 56

The next cue, again a sub-cue of the parent, determines what happens if the player says
„yes‟ to accept the quest.

<cue name="B01M47S00 Mission Accepted" comment="If the player accepts your quest">

 <condition>

 <check_all>

1 <bbs_quest_selected quest="B01M47S00Lottery" answer="yes"/>

 </check_all>

 </condition>

 <action>

 <do_all>

2 <do_choose>

3 <do_when value="{player.money}" min="1001">

4 <accept_bbs_quest quest="B01M47S00Lottery"/>

5 <reward_player>

 <money exact="-1000"/>

 </reward_player>

 </do_when>

6 <do_otherwise>

7 <incoming_message author="Spamelot Lottery" text="You cannot buy a ticket

with money you don't have. Goodbye."/>

8 <cancel_cue cue="lucky dip"/>

 </do_otherwise>

 </do_choose>

 </do_all>

 </action>

1: If the quest was selected, i.e. the answer is yes, the action(s) will trigger

2: Here we see <do_choose> being used to good effect, it will have at least two sub-
nodes, <do_when> and <do_otherwise>, the usage of the whole <do_choose> node can
be likened to „if x=y do a, else do b‟.

3: So, „if‟ the player has at least 1001Cr then…

4: This action then tells the quest engine that the quest is now active.

5: <reward_player> using a negative amount of money is the easiest way of charging the
player for something.

6: Now the „else‟ bit, if the player hasn‟t got at least 1001Cr then…

7: …the player receives a message from the lottery company, chastising the player for trying to
buy a ticket without the money.

8: To make sure that‟s the end of it if the player can‟t afford a ticket, the following cue and its
sub-cues is cancelled.

Mission Director © Egosoft 2007

Page 45 of 56

<cues>

 <cue name="lucky dip">

 <condition>

1 <cue_is_complete cue="parent"/>

 </condition>

 <action>

 <do_all>

2 <set_value min="1" max="7" name="this.rand1"/>

3 <set_value min="8" max="17" name="this.rand2"/>

4 <set_value min="18" max="25" name="this.rand3"/>

5 <set_value min="26" max="33" name="this.rand4"/>

6 <set_value min="34" max="42" name="this.rand5"/>

7 <set_value min="43" max="49" name="this.rand6"/>

8 <incoming_message author="Spamelot Lottery" text="Your lucky dip numbers are:

{value@this.rand1} {value@this.rand2} {value@this.rand3} {value@this.rand4}

{value@this.rand5} {value@this.rand6}\n\nGood luck!"/>

 </do_all>

 </action>

1: The actions of this cue will be triggered once the parent cue‟s actions are completed.

2-7: These lines set the values of the named variables to a random number within the
provided ranges.

8: An incoming message, using the values set above, is sent to the player telling them
what their lottery numbers are. How the numbers are generated isn‟t vitally important,
since the odds of winning are calculated by other means.

Mission Director © Egosoft 2007

Page 46 of 56

This cue is a further sub-cue of „lucky dip‟; here we see the draw itself.
<cues>

 <cue name="draw" comment="a certain amount of time after ticket purchase">

 <timing>

1 <time min="20s" max="25s"/>

2 <!--The 20-25s is just a debug time to shorten testing -->

3 <!--<time min="10h" max="12h"/>-->

 </timing>

 <action>

 <do_all>

4 <set_value name="this.prize" min="1000000" max="1500000" comment="Prize is

somewhere between 1 and 1.5 million Cr"/>

5 <set_value name="this.lotterynum" min="1" max="100000" comment="the odds of

winning are 1 in 100000"/>

 <do_choose>

6 <do_when value="{value@this.lotterynum}" max="1">

7 <incoming_message author="Spamelot Lottery" text="Congratulations! You've

won the jackpot!\n\n{value@this.prize} Credits are being transferred

to your account."/>

8 <reward_player>

 <money exact="{value@this.prize}"/>

 </reward_player>

 </do_when>

9 <do_otherwise>

10 <incoming_message author="Spamelot Lottery" text="Sorry, you have not won

a prize this time. Please try again soon."/>

 </do_otherwise>

 </do_choose>

 </do_all>

 </action>

 </cue>

</cues>

1-3: Looking at the timing, we‟ve got one range of timings for debug/testing purposes.
In the final version, it would be between 10 and 12 hours after the ticket is bought that the
draw takes place.

4: Here we are assigning to the variable {this.prize} a random value between 1 and 1.5
million credits.

5: Here we‟re setting the winning odds. We‟ve assigned a random value of 1 to 100,000
to the name „this.lotterynum‟. 1 in 100,000 is therefore the chance of winning.

6: In another <do_choose>, we‟re saying „if‟ the value of „this.lotterynum‟ is 1 (i.e. if that
number in 100,000 comes up) then the enclosed actions will be carried out.

7: If the 1 chance in 100,000 comes up, the player receives a congratulatory message
and notification of the transfer of winnings. {value@this.prize} the random number set
above is transferred into the player‟s account…. Nice.

8: It‟s so good to be able to add money to the player account and this time we‟re adding
a positive number to the <reward_player> node, in this case the same value that we used
in the message above.

9&10: So, if any number between 2 and 100,000 is evaluated (ie the „otherwise‟ is the
case, the player will receive a consolation message.

Mission Director © Egosoft 2007

Page 47 of 56

 </cue> <- This is „lucky dip‟ being closed.
 </cues>

 </cue> <- This is „B01M47S00 Mission Accepted‟ being closed.
1 <cue name="B01M47S00 Mission Rejected" comment="If the player declines

your quest">

 <condition>

2 <bbs_quest_selected quest="B01M47S00Lottery" answer="no" />

 </condition>

 <action>

 <do_all>

3 <incoming_message author="Spamelot Lottery Services" text="Too bad!

You look the lucky type." />

 </do_all>

 </action>

 </cue>

 </cues>

 </cue> <- This is „B01M47S00Lottery Mission Offer‟ being closed.
 </cues>

 </cue> <- This is „B01M47S00LotteryMainCue‟ being closed.
 </cues>

</director>

1: If the player‟s original response to the offer is no, this cue deals with that eventuality.
Note that it‟s on the same level of the cue structure as B01M47S00 Mission Accepted.

2: As with the mission accepted cue, if the cue‟s condition is evaluated as „no‟ then an
action is performed.

3: The action is simply an incoming message telling the player what they‟ve missed out
on.

That then is a BBS mission. A fairly simple one admittedly, but it contains all of the key
features that are required. Let‟s take a look at the cue structure and you can see how
that compares with the structure that exists in the .xml file.

B01M55S01

LotteryMainCue

B01M55S01

Lottery Mission Offer

B01M55S01

Mission Rejected

B01M55S01

Mission Accepted

lucky dip

draw

Mission Director © Egosoft 2007

Page 48 of 56

A VARIABLE WORTH KNOWING ABOUT…

The variable, {group.object.select@group} is a useful one to know. If your mission
requires the player to select one of a number of grouped objects in a message, then this
is what you should use. The first thing you need to do is define the objects in the group.

To illustrate how this works let‟s find a group of stations in the player‟s current sector:

<action>

 <do_all>

1 <find_station class="station" race="{player.sector.race.name}" max="5"

group="Foundstations" multiple="1">

 <sector sector="{player.sector}"/>

 </find_station>

 </do_all>

</action>

1: In the find_station sub-node we are looking for a maximum of 5 stations, owned by the
sector‟s owner race, located (as per the sector sub-node) in the player‟s sector. We are
assigning the group name „foundstations‟ to the result of the search. „Multiple‟ specifies
that the result of the search must be more than one object.

Now in a subsequent message, in which one of the objects needs to be selected, we can
use {group.object.select@group}.

<action>

 <do_all>

1 <do_if min='1' value='{group.object.count@Foundstations}'>

2 <offer_bbs_quest quest="Bargains"

author="{random.pilot@{player.sector.race.name}}" text="Here is a list of

stations, at which you can buy the specified ware. Select one now.\n\n

[center]{group.object.select@Foundstations}[/center]"/>

 </do_if>

 </do_all>

</action>

1: Here we‟re checking that the number of stations found as a result of our search is at
least one.

2: If so, the BBS quest, „Bargains‟, is offered. The author is a random name of the race
of the sector the player is currently in. We are telling the player in the message that there
are up to 5 stations at which the player can buy a certain ware.

<cue name="BBS Mission Accepted">

 <condition>

1 <bbs_quest_selected quest="Bargains"/>

 </condition>

1: Normally the <bbs_quest_selected> sub-node requires both quest and an answer
attribute. Here there is no answer attribute; instead, the object selected is the answer and
the quest continues with that object in mind.

Mission Director © Egosoft 2007

Page 49 of 56

To be able to make further use of that selected object in the BBS quest we should create
the selection as a game object.

<action>

1 <set_object name="this.selection" value="{quest.answer@Bargains}"/>

</action>

1: Here we assign the name „this.selection‟ to the object selected from the BBS Offer.
Note the quest‟s name in the variable following the @ sign.

That object „this.selection‟ can now be the object or target of whichever commands are
required for the mission to progress.

This functionality extends to list selection not in BBS missions. The creation of the group,
from which an object will be selected, remains the same. Once an object has been
selected from the list, it must be made into a usable game object. That‟s done in the
same way as above, but with a slight difference.

<action>

1 <set_object name="this.selection" value="{question.answer@missiles}"/>

</action>

1: Note here the only difference is that it‟s the answer of the question rather than the
quest, which we want to make into an object.

This means that you must use the <ask_question> sub-node and that you must specify
the question‟s name in the value above. For example:

<action>

 <do_all>

 <find_station class="mine" max="10" group="mines" multiple="1">

 <sector sector="{player.sector}"/>

 </find_station>

 <ask_question name="select" author="Security" text="There are up to 10 mines in

this sector requiring destruction. Please select the first mine you intend

to destroy so we can clear the area of routine traffic.

 n\n[center] {group.object.select@mines} [/center]"/>

 </do_all>

</action>

<cues>

 <cue name="identification">

 <condition>

 <question_answered question="select"/>

 </condition>

 <action>

 <do_all>

 <set_object name="this.selection" value="{question.answer@select}"/>

 <set_target object="this.selection"/>

 </do_all>
 </action>

 </cue>

Mission Director © Egosoft 2007

Page 50 of 56

INCORPORATING IN-GAME SOUNDS

As you saw in the mission writing tutorial any number of various in-game sounds can be
played under a variety of circumstances. One of the examples you will have come across
is:

<play_sound soundid="924"/>

Incorporating in-game sound like that is very easy. When you select the „soundid‟
attribute from the lookup list, a long list of numbers appears. The description of the sound
relative to each number is displayed in the lookup:

The list of sound IDs and their descriptions can also be found in the director.htm
documentation file.

INCORPORATING TEXTS

Many examples of incorporating texts have been used in the tutorial missions. In
incoming messages, BBS offers, questions you can include free-flow text for your
missions. Developers are urged to keep their texts as brief as possible. Also, as
suggested in the tutorial, official missions will use textID references in the code, rather
than free-flow.

So, instead of using texts like this in our official missions….

<incoming_message author="Shipboard Computer" text="Hello World"/>

We should be using text references like this…

<incoming_message author="{1323,119}" text="{1278,305)"/>

Mission Director © Egosoft 2007

Page 51 of 56

TESTING YOUR MISSIONS

It is imperative that you test your own mission as its development progresses. This is a
key way to ensure correct functionality at each stage. By testing it regularly and see how
different conditions and actions affect the mission, you can make changes, sometimes in
real time, to correct or change the mission‟s behaviour.

The Mission Director Menu

The Mission Director menu is accessed
by pressing the Enter key on the keypad
for the main menu and selecting Mission
Director, as illustrated in the screenshot.

This menu allows you to do two things.
Firstly it allows you to view your mission
cues. Secondly, and most importantly, it
allows you to reset the Mission Director
in-game. Please note though, that this
does not work with BBS quests and

objects created in previous test iterations will still be present in the game. If you need a
clean slate with which to test, it‟s best to start a new custom game.

As mentioned earlier, all of the .xml mission files located in the director folder will be
loaded into the game. It is wise, when testing a new mission that no other mission files
are in the folder to interfere with its operation. The „director‟ files, of course, must remain
in that folder.

As with the basic test earlier, it is best to start a new game in a custom universe. Once
loaded the game should respond to the initial starting condition of the mission. If it
appears that that is not the case, then you should quit the game (to the main menu),
make appropriate changes then start a new game in a custom universe.

Using the director.dmp file

This file, located in the game‟s root directory, can be an invaluable source of information
when troubleshooting and debugging a mission.

The dump file is composed of three sections.

 A rather chaotic-looking first section is the file being read and the XML being
parsed.

 The second section is a neater rendering of the cues and their constituent
elements.

 The final section gives the user a time-indexed account of game events and
notifications, resulting from the conditions and actions of each cue as it is
completed.

Mission Director © Egosoft 2007

Page 52 of 56

The first thing you should look for when encountering difficulties is any occurrence of the
word „error‟. Seeing where that occurs will help you to diagnose the problem.
Noting the last entries in the file will often show you where the mission is halting, even if
there is no specific code problem stopping it from working.

When testing your mission you‟ll know what cue should be running at any given stage, so
by checking that particular cue‟s entry in the dump file, you can see if a condition is not
being met or an action not being performed. If that cue does not appear at all, then it is
likely that the problem lies with the parent cue. If the cue appears (usually as "Conditions
checked (first time)") you know the cue is there and the conditions are actually checked -
see if it appears again so you know whether the conditions are being met. If it doesn't
appear after that you can be pretty certain that's because the conditions have not been
met - you've narrowed the problem down to the condition of the cue in question.

If you‟re working with values (global or local) the dump will tell you what value has been
assigned to it (and also if it's been assigned) that helps to see if maybe some calculations
went wrong. If you are not certain about the values you are using and how they might
appear, you can add, for debug purposes only, an incoming message to output the values
you are working with. Also very useful for event debugging is that all MD-relevant events
that occur are listed in the dump, so if you are checking for an event and the condition
doesn't trigger or is met at an unexpected time, check the dump to see when (or if) the
event occurred.

Isolation Testing

If you have multiple conditions and you are unsure at which point the mission is failing, it
makes sense to perform an „isolation test‟. That is, to reduce them one by one to find the
one that is causing problems. That means putting that cue and its condition in a new file
(make sure the cue names are different from the original) and using that to test if the
conditions can be matched (if necessary create a parent cue to set some things you need
to the appropriate values).

Mission Director © Egosoft 2007

Page 53 of 56

GLOSSARY

Action – a key node in a cue; this defines what happens in the game once certain
conditions have been met.
Attribute – provides additional information about the node or sub-node with which it is
associated.
Condition – a key node in a cue; this sets conditions to be met or events that have to
have occurred for certain actions to take place.
Cue – a key element of Mission Director mission structure, containing condition, timing
and action information.
Expression – a mathematical operation using numbers and/or variables.
Instance – a copy of a cue, created by the instantiate attribute, separate to the original.
Internal ID – each object in the game has an internal ID that uniquely identifies that
object.
Library cue – a cue containing one or more other cues of conditions and actions, which
can be called upon as needed, using ref=””. They are not parsed otherwise.
Look-up – a dropdown menu of possible values for an attribute.
Node – an XML tag that performs a specific function.
Object – in the Mission Director, this is a game object, already existing or created by the
mission.
Parsing – this means essentially „reading and processing‟, i.e. how the game interprets
the Mission Director XML.
Quest – a mission, whether BBS, HQ, In-space or Plot-related.
Schema – an XML file that provides the structure for nodes, sub-nodes and look-ups.
Sub-cue – a cue which exists only inside another cue for which the conditions of the
parent cue are implicit, i.e. it will not even be created until those conditions are met.
Sub-node – a sub-node is similar in function to an attribute but groups several additional
pieces of information.
Timing – a key node in a cue, this establishes elapsed time between conditions being
met and actions taking place, the number of times the actions will be performed, and the
intervals between them being performed.
Value – this can be any piece of data; a string, an integer, a number, a variable. The
game uses many values in many ways.
Variable – a value (text or number), which can be used or created to substitute variable
values into missions rather than only being able to use fixed values.

Mission Director © Egosoft 2007

Page 54 of 56

APPENDICES

In the appendices you‟ll find some useful information which is a bit long and heavy to be
squeezed in the main body of the guide. Enjoy.

APPENDIX 1: INSTANTIATION

Instantiation changes what happens when a cue's conditions are met - if a cue is NOT
instantiated then the cue's actions are run (however many times are specified in the
timing) and the cue is marked as completed - if a cue IS instantiated then a COPY of the
cue (and all its sub-cues) is made and it is this COPY in which the actions are performed
and it is the COPY whose status is set to complete when they are finished - this means
that if the conditions in an instantiated cue are met again then the whole thing happens all
over again.

An instantiated cue should only be used with conditions that are only going to be met
once (or a fairly limited number of times) OR with conditions that include an event
condition.

Instantiation should NOT be used in a cue which, say, just depends on the game time
being greater than a specific value as this will result in a copy of the cue being made
every few milliseconds and the game crashing shortly afterwards.

The most common use of an instantiated cue is in responding to events such as the
player ship changing sector or a BBS mission being evaluated.

Because the copying process copies a cue AND all its sub-cues, you need to be
"instance-aware" in any cue which has an ancestor that is instantiated. instance-aware
means being careful about the scope of stored values, objects, cue names, etc., being
aware that the original cue will always appear not to have been activated, and being
aware that your instance will not just be marked as complete when it has finished but will
also actually cease to exist when all of its sub-cues and their sub-sub-cues etc have also
been marked as complete.

It is also possible to have an instantiated sub-cue within an instantiated sub-cue - i.e. you
can end up with one or more copies of parts of a cue structure that is itself a copy of the
original - this sounds complicated but means that you can, for example, have an
instantiated cue that responds to player sector changes in each of several active copies
of the same mission (which are instances because they are coming from evaluating BBS
offer conditions).

Mission Director © Egosoft 2007

Page 55 of 56

APPENDIX 2: LIBRARY CUES

It is possible to create reusable library cues. For example, if you currently have several
cues that create a random M5-class ship, you no longer need to copy and paste the code
and remember to change each copy whenever you want to improve it. Instead you can
create a single cue, marked as a library cue so that it does not get triggered in the normal
way, and refer to it from each of the cases where you want to use it.
For example:

<cue name="mylibrarycue" library="1">

 ...

</cue>

<cue name="myfirstcue">

 ...

 <cues>

 <cue ref="mylibrarycue" />

 </cues>

</cue>

<cue name="mysecondcue">

 ...

 <cues>

 <cue ref="mylibrarycue" />

 </cues>

</cue>

In the above example, „mylibrarycue‟ itself would be ignored because it is marked as a
library, but its definition would replace the two references in the sub-cues of „myfirstcue‟
and „mysecondcue‟, and it would be triggered normally in both of the two cues in which it
is referred to.

Sometimes it is useful to use the same complex cue conditions to trigger different actions
or have different cue conditions trigger the same action. In these cases a library cue can
still be used, by referring to the cue from only the component(s) you want replacing with
the library version. For example:

<cue name="mylibrarycue" library="1">

 <action>

 ...

 </action>

</cue>

<cue name="myfirstcue">

 <condition>

 ...

 </condition>

 <action ref="mylibrarycue" />

</cue>

<cue name="mysecondcue">

 <condition>

 ...

 </condition>

 <action ref="mylibrarycue" />

</cue>

Mission Director © Egosoft 2007

Page 56 of 56

Finally, library cues are all very useful but sometimes you want cues that are almost but
not quite the same. For example, you might want a cue that creates a random M5 class
ship and sets it to be owned by the target race in your mission. You could create it in a
library cue and then set ownership separately, but that could get quite messy. A simpler
solution is to use a parameter in your library cue, as follows:

<cue name="mylibrarycue" library="1">

 <action>

 ...

 <create_ship ...="" race="{param@targetrace}" ...="" >

 ...

 </create_ship>

 ...

 </action>

</cue>

<cue name="myfirstcue">

 ...

 <cues>

 <cue ref="mylibrarycue">

 <params>

 <param name="targetrace" value="{value@myfirstcue.myrace}" />

 </params>

 </cue>

 </cues>

</cue>

<cue name="mysecondcue">

 <condition>

 ...

 </condition>

 <action ref="mylibrarycue">

 <params>

 <param name="targetrace" value="{lookup.race@boron}" />

 </params>

 </action>

</cue>

Notice how in this example, one cue is using the library cue as a complete sub-cue and
the other is using just the action component of it.

Because no parameter type is specified it will accept the „targetrace‟ parameter from
either source. If you want to be more specific about where a library cue should and should
not take its parameters from then you can specify this in the parameter variable, e.g.
"{param.cue@targetrace}" or {param.action@targetrace}, in which case the parameter
will only evaluate if the library was referred to in the corresponding way. You can pass as
many parameters as you like to a library cue, and you can pass ordinary values (like "1"
or "m5") as well as variables.
You can define a library cue at the top level of the cue structure in a director file or inside
another cue - in the latter case the scope of a library cue is that it is visible to all cues
from the cue in which it is defined downwards in the cue tree. It is not valid for a top-level
cue to be a reference, but components of a top-level cue can be references provided the
library cue they refer to is global in scope (i.e. also top-level). Finally, a cue does not
absolutely have to have a library flag in order to be used as a library. You can "borrow" a
normal cue or cue component for use in another cue, regardless of that flag, provided it is
within scope.

