
MISSION DIRECTOR
GUIDE

MISSION DIRECTOR
GUIDE

Mission Director Guide

The Mission Director (MD) is a subsystem of the game and interprets mission scripts written
in an XML-based language. The MD in X Rebirth is based on the same core concepts as the
MD in X3: Terran Conflict, but with major changes based on feedback from MD users and a
completely new implementation.

This document is intended primarily as a guide for mission developers. An introduction to the
original MD can be found in the Egosoft forums. There is also a PDF guide for the X3
Mission Director, which is partially used as a template for this document.

Disclaimer:
Modifying your game may result in unexpected behaviour, including but not limited to
savegames becoming incompatible with the original game and/or with future versions.
Modifying your game also means that you may not receive support for any problems that
you encounter. Egosoft does not accept any responsibility for damage or loss of data as a
result of such modification. You are advised to back up your savegames before modifying
your game.

v1.0 / 05122013

http://forum.egosoft.com/index.php
http://forum.egosoft.com/index.php

Table of Contents

Mission Director Guide

Table of Contents

MD scripts

MD script structure

Cues

Conditions

Actions

Libraries

Library Parameters

Instantiation

Cleaning up instances explicitly

Access to instances

Pitfalls

Expressions

Numeric data types and sufxes

Operators

Operator precedence rules

Coercion

Boolean operators

Strings

Lists

Value properties

Static lookups

Player properties

Safe properties

Complete property documentation

Common attribute groups

Value comparisons

Random ranges

Variables and namespaces

Creating and removing variables

Accessing remote variables

Namespaces

Dening a cue’s namespace

3
4
4
5
5
7
8
9
10
10
11
12
13
13
14
15
16
16
17
17
17
19
20
20
21
21
21
22
22
22
23
23
24

- 3 -

MD scripts
MD scripts are not necessarily missions. An MD le can contain a part of a mission, multiple

missions, or no mission at all, as the MD is used for more than just missions.

MD les are XML les located in the game folder md. All XML les in that folder are loaded at game

start. The le names are irrelevant, since the internally used script names are read from the XML

root nodes. However, it’s recommended to keep le name and internal script name identical to

avoid having to look up the names.

To edit MD scripts, an XML editing tool is needed. Microsoft Visual Studio (if available) or Microsoft

Visual Web Developer (for free) are highly recommended because they have pretty good support

for XML schemas (XSD). The provided Mission Director schema les help you create the XML le

by displaying all available tags and attributes as you edit the XML.

This functionality is only available if the schema les md.xsd and common.xsd are in the correct

folder. If you are editing the XML in the game folder directly, all is well and the les are loaded from

the libraries folder. However, if you are editing in a separate folder, copy those XSD les from the

libraries folder directly into the folder where your XML les are located.

MD script structure
In this section we will look at how to start the whole process by creating a new MD

mission le and the basic steps in producing mission content with XML code. There will be a

description of the key elements of the mission le.

The XML root node of an MD le is called “mdscript” and looks like this:

<?xml version="1.0" encoding="utf-8"?>

<mdscript name="ScriptName" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="md.xsd">

“ScriptName” is the name used for this script regardless of the le name. It has to start with an

upper case letter and must be unique among all MD script names. It also should not contain

spaces, so other MD scripts can use it as an identier to access this script’s contents easily.

The only allowed sub-node of <mdscript> is <cues>, which can only contain <cue> sub-nodes:

<?xml version="1.0" encoding="utf-8"?>

<mdscript name="ScriptName" ...>

 <cues>

 <cue name="RootCue1" > [...]

 </cue>

 <cue name="RootCue2"> [...]

 </cue>

 </cues> /

<

mdscript>

- 4 -

http://www.visualstudio.com/en-US/products/visual-studio-express-vs
http://www.visualstudio.com/en-US/products/visual-studio-express-vs
http://www.visualstudio.com/en-US/products/visual-studio-express-vs
http://www.visualstudio.com/en-US/products/visual-studio-express-vs

Cues

Cues are the main ingredient of an MD script. A cue consists of a set of conditions and a set of

actions. When the conditions are met, the cue is activated and the actions are performed. A cue

can have child cues, or sub-cues: A sub-cue exists only when its parent cue has become active,

so the activation of the parent cue initiates the condition checks of its child cues.

A cue can have the following states:

● Disabled: The parent cue has not become active yet, so this cue is basically non-existing.

● Waiting: Either this is a root cue, or the parent has become active. The cue is checking its

conditions and will become active when they are met.

● Active: The cue is about to perform the actions. Child cues have entered the waiting state.

Note: There can be a delay between the activation and performing the actions if the

<delay> tag is used!

● Complete: The cue has nished performing its actions.

● Cancelled: The cue has been cancelled. This state cannot normally be reached but only if

a cue actively cancels itself or another cue. No condition checks or actions are performed in

this cue or any sub-(sub-)cue.

This is how a cue node looks like:

<cue name="CueName">

 <conditions> [...]

 </conditions>

 <delay exact="5s" />

 <actions> [...]

 </actions>

 <cues> [...]

 </cues>

</cue>

The rules for naming cues is the same for MD script names: The name starts with an upper case

letter, and has to be unique within this file. So it is actually possible to use the same cue name

in different scripts, which is different from the MD in X3.

Conditions

The <conditions> node can contain one or multiple conditions, all of which must be met to activate

the cue. If the node is missing, the cue will become active unconditionally. The conditions are

checked in sequence, and if a check fails, the following conditions are ignored. There are two types

of conditions: Events and non-event conditions.

Non-event conditions are checked in regular intervals. They may be based on simple values or

ranges, such as a particular in-game time having been reached or the player having a certain

amount of money. They may also be based on more complex player information, such as what

ships they own, whether the player is in a particular area or near a particular object.

Event conditions are triggered when the corresponding event happens, such as the event that a

particular object has been targeted, attacked or destroyed. All event nodes have the prex “event_”

so you can easily determine a condition type. Non-event conditions can be used in combination

with an event, so they will be checked whenever the event happens. If a condition uses an event, it

- 5 -

must be in the rst sub-node of the <conditions> node. It is even possible to dene multiple

alternative events that should activate the cue. The rst sub-node should be <check_any> in this

case, so only one of its sub-conditions has to be met.

Example for an event condition:
<conditions>

 <event_object_destroyed object="$target"/>

</conditions>

Example for an event condition with an additional (non-event) check:
<conditions>

 <event_player_killed_object/>

 <check_value value="event.param.isclass.turret"/>

</conditions>

Example for an event condition with two alternative events and a common additional check:
<conditions>

 <check_any>

 <event_cue_completed cue="Cue1"/>

 <check_all>

 <event_player_killed_object/>

 <check_value value="event.param.isclass.turret"/>

 </check_all>

 </check_any>

 <check_age min="$starttime"/>

</conditions>

For more information about expressions and event parameters, see below.

<check_all> and <check_any> can be used with non-event conditions as well, but if <check_any>

is the rst node of an event condition, all its sub-nodes have to dene events. In case of

<check_all>, only its rst node must be an event (or yet another <check_any>), to make sure that

exactly one event is required to activate the cue.

If a cue has a <conditions> node without any event, it must have one of the attributes onfail or

checkinterval. For onfail, you can use the values “cancel” or “complete”. If the attribute is present,

the condition check will happen only once and the cue will be activated on success, or

completed/cancelled on failure (without performing the actions). With checkinterval, you can

specify a constant time interval between condition checks. The conditions will be checked regularly

forever until they are met, unless the cue’s state is changed explicitly by an external event.

Additionally, you can use the attribute checktime to set the time of the rst condition check (also

possible in combination with onfail). The checktime can be an expression with variables and is

evaluated when the cue is enabled (when the condition checks would normally start, i.e. at game

start for root cues, or after the parent cue becomes active).

Examples:

Check conditions every 5 seconds, but start checking only 1 hour after game start.
<cue name="Foo" checktime="1h" checkinterval="5s">

 <conditions>

 [...]

</cue>

- 6 -

Check conditions 3 seconds after the cue is enabled, and cancel the cue in case of failure.
<cue name="Foo" checktime="player.age + 3s" onfail="cancel">

 <conditions>

 [...]

</cue>

Actions

The <actions> node contains the actions that are performed one after another, without any delay

inbetween. You can enforce a delay after activation of the cue and actual action performance,

using a <delay> node right before the <actions>:
<delay min="10s" max="30s"/>

Note that during the delay the cue is already in the active state, and the sub-cues have been

enabled! If you want to make sure that a sub-cue only becomes active after this cue is complete,

there is a useful event condition for that:
<event_cue_completed cue="parent"/>

<actions> is optional. Leaving it out may be useful if you only want to enable sub-cues after the

cue’s condition check. The state transition from active to complete will still take the <delay> node

into account.

Note that the MD script language is not designed as a programming language. The actions are

performed in sequence, although they can be nested to form more complex structures. Loops and

conditionals exist to some extent, but not necessarily in the sense that a programmer might expect.

Analogously to <check_all> and <check_any>, you can use <do_all> to perform all the contained

sub-node actions, and <do_any> to perform only one of them. <do_all> is particularly useful when

nested in a <do_any>.

Example, which selects one of the three texts randomly:
<actions>

 <do_any>

 <debug_text text="'Hello world'"/>

 <debug_text text="'Welcome to the MD'"/>

 <debug_text text="'And now for something completely different'"/>

 </do_any>

<actions>

(Side note: Messages printed with <debug_text> are usually only visible when the “scripts” debug

lter is enabled.)

Each child action in a <do_any> node can have a weight attribute, which can be used to control

the random selection of an action node. The default weight of a child node is 1.

Also available is <do_if>, which completes the enclosed action(s) only if one provided value is

non-null or matches another. Directly after a <do_if> node, you can add one or more <do_elseif>

nodes to perform additional checks only in case the previous conditions were not met. The node

<do_else> can be used directly after a <do_if> or a <do_elseif>. It is executed only if none of the

conditions are met.

- 7 -

<do_while> also exists, but should be used carefully, since it is the only action that could cause an

innite loop, which freezes the game without any chance of recovery.

Every action can have a chance attribute, if you only want it to be performed with that chance,

given as percentage. Otherwise it will simply be skipped. If chance is used on a conditional action

such as <do_if>, the script will behave as if the condition check failed.

Libraries
Libraries are cues which are not created directly but only serve as templates for other cues. This

allows for modularisation, so you can re-use library cues in many different missions.

Note: The syntax of libraries is considerably different from the syntax in the MD of X3TC.

Library cues are written like normal cues, they are also dened in a <cues> node, just with the

difference that the XML tag is called library instead of cue:
<library name="LibFoo" checktime="1h" checkinterval="5s">

 <conditions>

 [...] /

< library>

Although it is called library, it’s basically just a cue that doesn’t do anything. You can mix cues and

libraries as you want, as root cues or sub-cues - the location within the le is unimportant. All that

counts is the library name, which has to be unique within the MD script, like all other cue names.

To use a library, use the attribute ref:
<cue name="Foo" ref="LibFoo"/>

This will create a cue with the name Foo that behaves just like the library cue LibFoo. In this

example, LibFoo has to be a library in the same MD script le. To use a library LibFoo from

another script, you have to qualify it with the script name, using the md prex:
<cue name="Foo" ref="md.ScriptName.LibFoo"/>

When the ref attribute is provided, all other attributes (except for name) will be ignored and taken

from the library cue instead.1

Also all sub-cues of the library will be created as sub-cues of the cue that uses it. They are dened

in the library as <cue>, not as <library>. (Although you can dene a library as a sub-cue of another

library, the location in the le does not matter, as already stated above.) It is even possible to

reference other libraries in sub-cues of a library!

In contrast to X3TC, a cue that references a library also has its own name (Foo in the example

above), so other cues can access it in expressions by that name. Sub-cues of Foo cannot be

accessed by their name though. Within the library itself, expressions can use all names of cues

that belong to the library (the <library> and all sub-cues). They will be translated properly when the

library is referenced.

1By default a library creates its own namespace, as if namespace="static" were specied. See the

section about namespaces.

- 8 -

Examples:
<cue name="Foo" ref="LibFoo"/>

<cue name="Bar" ref="LibFoo"/>

<library name="LibFoo">

 <actions>

 <cancel_cue cue="this"/> <!-- Cancels the cue referencing LibFoo -->

 <cancel_cue cue="LibFoo"/> <!-- Cancels the cue referencing LibFoo -->

 <cancel_cue cue="Foo"/> <!-- Error, Foo not found in library -->

 <cancel_cue cue="Baz"/> <!-- Cancels Baz in the referencing cue -->

 <cancel_cue cue="md.Script.Foo"/> <!-- Cancels Foo -->

 <cancel_cue cue="md.Script.LibFoo"/> <!-- Error, trying to cancel library -->

 <cancel_cue cue="md.Script.Baz"/> <!-- Error, trying to cancel library sub-cue -->

 </actions>

 <cues>

 <cue name="Baz"> [...] <!-- Sub-cue is created in all cues referencing LibFoo -->

 </cues>

</library>

(Note that these examples are denitely not examples of good scripting style.)

So when writing the library, you don’t have to worry about name confusion, just use the names of

cues in your library and it will work as expected when the library is used. Names of cues that do

not belong to the library will not be available in expressions (see Foo in the example above),

however, names of other libraries in the le are available when referencing them in the ref attribute.

Library Parameters

A library can be parameterized, so that it can be adapted to the needs of missions that use it. You

can dene required and/or optional parameters for a library, and it will be validated at load time that

the user of the library has provided all required parameters.

Parameters are dened like this:
<library name="Lib" onfail="cancel">

 <params>

 <param name="foo"/>

 <param name="bar" default="42"/>

 <param name="baz" default="player.age"/>

 </params>

 [...]

</library>

If a default value is supplied, the parameter is regarded as optional, otherwise it’s required. When

providing the actual parameters in a referencing cue, note that there is no <params> node:
<cue name="Foo" ref="Lib">

 <param name="foo" value="race.argon"/>

 <param name="bar" value= 0" "/>

</cue>

- 9 -

The values (including default values) can be variable expressions and will be evaluated when the

cue is enabled, i.e. when it starts checking the conditions. They will be available to the cue as

variables, using the parameter name with a ‘$’ prex. In the example above, the variables $foo,

$bar, and $baz would be created.

<library name="Lib">

 <params>

 <param name="foo"/>

 </params>

 <actions>

 <debug_text text="$foo"/>

 </actions>

</library>

If your library is supposed to provide a result to the library user, it is recommended to store a

predened variable in the library cue with a standardized name, e.g. $result. The user will be able

to read it via CueName.$result. This variable does not have to be dened as a parameter but

should be documented in the library.

Instantiation
One of the possible cue attributes is instantiate. If you set it to true, this changes what happens

when a cue's conditions are met. Normally, if a cue is not instantiated, the cue's actions are run

(taking a delay node into account) and the cue is marked as completed. But with instantiate, a

copy of the cue (and all its sub-cues) is made when the conditions are met, and it is this copy in

which the actions are performed and it is the copy whose status is set to complete when they are

nished - this means that the original cue (the so-called static cue) remains in the waiting state,

and if the conditions are met again then the whole thing happens all over again.

An instantiating cue should only be used with conditions that are only going to be met once (or a

fairly limited number of times), or with conditions that include an event condition. Instantiation

should not be used in a cue which, say, just depends on the game time being greater than a

specic value as this will result in a copy of the cue being made after each check interval, which

could increase memory usage a lot. The most common use of an instantiated cue is in responding

to events such as the player ship changing sector, to react every time that event happens.

Instances that are created via instantiate are called instantiated cues. But sub-cues of instances

are also instances (sub-instances) - they are created when they enter the waiting state. An

instance is removed again (thereby freeing its memory) when it is complete or cancelled, and when

all its instance sub-cues have been removed before. The simplest case is an instantiating cue with

no sub-cues: The instance is created, the actions are performed, and the instance is removed

immediately on completion. A pitfall could be an instance with a sub -cue that is forever in the

waiting state (e.g. waiting for an event from an already destroyed object). It can never be removed,

so you should clean up such a cue yourself, e.g. by cancelling it explicitly.

Cleaning up instances explicitly

Cancelling a cue with <cancel_cue> also cancels all its sub-cues, and cancelling a static cue

stops it from instantiating more cues - but it does not cancel its instances. Resetting a cue with

- 10 -

<reset_cue> resets both sub-cues and instantiated cues, but has the (desired) side effect that

condition checks will start again if the parent cue’s state allows it. Even a sub-instance that has

been reset can return to the waiting state. Resetting an instantiated cue will stop it forever,

because it is not supposed to be in the waiting state (only its static cue is). Resetting will also

induce the clean-up reliably, but keep in mind that this is not the case for instance sub-cues.

Note: <cancel_cue> and <reset_cue> only take effect after all remaining actions of the current cue

are performed. So you can even safely cancel the cue that you are currently in (keyword “this”) or

any ancestor cue, and still perform more actions afterwards.

Access to instances

Note: This sub-section requires basic knowledge of script expressions, see the section below.

In case of instances with sub-instances, you will often want to access a related instance from the

current one. Like in the non-instance case, you can simply write the cue name in an expression to

reference that cue. However, you should be aware of the pitfalls that are accompanied by this.

When you use a cue name from the same script in an expression, it will always be resolved to

some cue2 - usually a static cue, even if it is still in the disabled state, but it can also be an

instance, if it is “related” to the current one.

Related means that this cue and the referenced cue have a common ancestor instance, and the

referenced cue is a direct (non-instantiated) descendant of that common ancestor.

Example chart:

This chart represents a script of 5 cues: Foo, Bar, SubBar, Baz and SubBaz. Continuous arrows

denote parent-child relationship. Foo and Baz are instantiating cues (highlighted with red border).

The static cues always exist, although static children of instantiating cues can never become

active. Instances only exist as long as they are needed.

2Libraries are an exception: You will get an error if you try to access a cue outside the library by

just writing the name, if it’s not yet another library.

- 11 -

Example situations:

● In the static tree: Cue names in expressions are always resolved to the static cues.

● In the inst-2 tree: “SubBar” in an expression will be resolved to SubBar (inst 2).

● In the inst-1 tree: “SubBar” in an expression will be resolved to SubBar (static) (!) because

the SubBar child of Bar (inst 1) does not exist yet, or not any more.

● In the inst-2a tree: “SubBaz” in an expression will be resolved to SubBaz (inst 2a)

● In the inst-2a tree: “Bar” in an expression will be resolved to Bar (inst 2) because Foo (inst

2) is a common ancestor.

● In the inst-2 tree: “SubBaz” in an expression will be resolved to SubBaz (static) (!) because

SubBaz (inst 2a) is not a direct descendant of the common ancestor Foo (inst 2), instead

Baz (inst 2a) has been instantiated.

In expressions, you can use the cue property static to access the static cue that instantiated a cue.

This does not work for sub-cues of other cues, and the result is not necessarily a real static cue! In

the example above, it would only work for cues with a dotted arrow pointing at them, and is

resolved to the source of the arrow. In other cases the result is null.

To get the real static cue that always exists and serves as template for instances, use the property

staticbase. This works for all cues, even for the static cues themselves.

In general, to access ancestors of the current cue, you can also use the keyword parent, also

recursively as properties of other cues (such as parent.parent.parent).

You can store cue references in variables. But when storing an instance cue in a variable, and later

accessing that variable, be aware that the instance may not exist anymore. Use the property

exists to check if an instance is still alive. (In contrast, non-instance cues always exist, but may be

in the disabled or cancelled state.)

Pitfalls

Some additional common pitfalls with respect to instantiation are listed here. There may be more.

● Conditions with results: If the instantiating cue has conditions with results, those results

are stored in variables - but in the variables of the static cue, not of the instance! So in the

<actions> you have to access the variables via the static keyword:
<debug_text text="static.$foo"/>

It may even be necessary to copy the variables over to the instance because the static

variables can be overwritten by the next condition check:
<set_value name="$foo" exact="static.$foo"/>

● Resetting completed/cancelled instances: As explained above, sub-instances are only

created when needed (when going to the waiting state) and are destroyed when they are

not needed any more (when they are completed or cancelled, including all sub-cues). There

are cases in which you want to access cues that don’t exist anymore - it simply doesn’t

work. In some cases you are safe: You can be sure that all your ancestors exist, and

instantiating cues won’t be removed until they are cancelled. In some other cases you

simply don’t know and have to check if the instance is already (or still) there.

● Lifetime of instances: Do not make assumptions about when an instance is removed! Just

looking at it in the Debug Manager keeps it alive for the time being. So, sometimes you

could still have a completed instance that wouldn’t exist under other circumstances.

- 12 -

Expressions
Most of the attribute values in actions and conditions are interpreted as script expressions and

parsed accordingly. An expression is a phrase that can be evaluated to a single value. The

simplest expressions are actual numeric values and strings, so called literals:

● 0 (integer number)

● 0772 (leading 0 means octal integer number)

● 3.14159 (oating point number)

● 5e12 (oat in exponent notation, “times ten to the power of”)

● 0xCAFE (hexadecimal integer number)

Note: Since octal numbers are hardly ever used (usually unknowingly), the parser is will produce a

warning if an octal number is encountered.

You can write string literals by putting the string in single quotes:

● 'Hello world'

● '' (empty string)

● 'String with a line break\n'

Note: Since expressions are written in XML attribute values, you have to use the single quotes

inside the double quotes for the actual attribute value. To write characters like < > " & in an

expression string (or anywhere else in an XML attribute value), you’ll have to escape them as <

> " & respectively. The backslash \ can be used in strings for escape characters like

in C/C++. Most important are \' for a single quote as part of the string, and \\ for the backslash

itself.

Numeric data types and suffixes

Numbers can have a sufx that determines their numeric type. There are also numerical data types

like “money” or “time” which can only be expressed by using an appropriate unit sufx:

● 5000000000L (large integer)

● 1f (oating point number, same as 1.0, just 1 would be an integer)

● 1000Cr (Money in Credits)

● 500m (Length in metres)

● 10s (Time in seconds)

● 1h (Time in hours, which is converted to 3600s automatically)

A space between number and sufx is allowed.

Here is the complete list of numeric data types and corresponding unit sufxes:

Data type Suffix Examples Description

null (none) null Coerced to non-null data type of value 0 when
needed.

integer i 42 32-bit signed integer. Default for integer
literals, so the sufx is not required for them.

largeint L 0x1ffffffffL Large 64-bit signed integer.

- 13 -

oat f 3.14
0x100f

32-bit oat (single precision). Default for
oating point literals, so the sufx is not
required for them.

largeoat LF 1.5e300 LF Large 64-bit oating point number (double
precision).

money ct (default)
Cr

200Cr
50ct

Money in Credits or cents, always stored in
cents. Do not forget to write Cr when working
with Credits.

length m (default)
km

500m
2.3km

Length in metres or kilometres, respectively. A
length value is always stored in metres.

angle rad (default)
deg

90deg
3.14159rad

Angle in radians or degrees, respectively. An
angle value is always stored in radians.

hitpoints hp 100hp Hit points

time ms
s (default)
min
h

800ms
1.5s
10min
24h

Time in milliseconds, seconds, minutes, or
hours, respectively. A time value is always
stored in seconds.

Note: All unit data types are oating point types, except for money, which is an integer data type.

Operators
You can build expressions by combining sub-expressions with operators. For Boolean operations,

expressions are considered “false” if they are equal to zero, “true” otherwise. The following

operators, delimiters, and constants are supported:

Operator /
Delimiter /
Constant

Type Example Result of
example

Description

null constant null + 1 1 Null value, see above

false constant 1 == 0 false Integer value 0, useful in Boolean
expressions

true constant null == 0 true Integer value 1, useful in Boolean
expressions

pi constant 2 * pi 6.2831853rad π as an angle (same as 180deg)

() delimiter (2 + 4) * (6 + 1) 42 Parentheses for arithmetic grouping

[] delimiter [1, 2, 2+1, 'string'] [1, 2, 3, 'string'] List of values (see below)

{} delimiter {101, 3} 'Some text' Text lookup (page/line) from TextDB
(Note: Also used for property
lookups, see below)

+ unary +21 * (+2) 42 Denotes positive number (no effect)

- unary -(21 * -2) 42 Negates the following number

- 14 -

not unary not (21 == 42) true Yields true if the following
expression is false (equal to zero),
false otherwise

typeof unary typeof null
typeof 0
typeof 'Hello world'

datatype.null
datatype.integer
datatype.string

Yields the data type of the following
sub-expression

sin unary sin(30deg)
sin(pi)

0.5
1.0

Sine (function-style, parentheses
required)

cos unary cos(60deg)
cos(pi)

0.5
0.0

Cosine (function-style, parentheses
required)

sqrt unary sqrt(2) 1.414213 Square root (function-style,
parentheses required)

* binary 21 * 2 42 Multiplication

/ binary 42 / 10
42.0 / 10.0

4
4.2

Division

% binary 42 % 10 2 Modulus (remainder of integer
division)

+ binary 1 + 1
'Hello' + ' world'

2
'Hello world'

Addition
String concatenation

- binary 1 - 1 0 Subtraction

lt
< (<)

binary 1 lt 3
1 < 3

true Less than

le
<=

binary 1 le 3
1 <= 3

true Less than or equal to

gt
> (>)

binary 1 gt 3
1 > 3

false Greater than

ge
>=

binary 1 ge 3
1 >= 3

false Greater than or equal to

== binary 1 + 1 == 2.0 true Equal to

!= binary 1 + 1 != 2.0 false Not equal to

and binary true and false false Logical AND (strict semantics)

or binary true or false true Logical OR (strict semantics)

Operator precedence rules

You can group sub-expressions using parentheses, but if you don’t, the following order of

operations is applied, so that 5-1+2*3 == 10 as you would expect. The order is the same as in the

table above, but there are operators with the same precedence - these are applied from left to

right.

- 15 -

● Unary operators: +, -, not, typeof (highest precedence)

● Multiplicative: *, /, %

● Additive: +, -

● Comparison: lt, le, gt, ge

● Equality: ==, !=

● and

● or (lowest precedence)

Coercion

When a binary arithmetic operator is used on numbers of different types, they will be coerced to a

suitable output type. The resulting type depends on whether a unit data type is involved (types that

are not plain integers or oats). The following cases may occur:

● Null and something else: The null value will be interpreted as “0” of the other type.

● Two non-unit integers: The result will be an integer of the largest involved type.

● Two non-unit numbers, not all integers: The result will be the largest involved oat type.

● Non-unit and unit: The result will be the unit type.

● Two different units: The types are incompatible. This is an error, the result is undened.

For multiplication and division, this may not be intuitive in all cases: Dividing a length by another

length results in a length - so if you want to have a simple oat as a result, you will have to convert

it manually.

There is a way to coerce a number into a different type manually: You append the corresponding

sufx to a sub-expression in parentheses, like this:

● (1 + 1)f ⟹ 2f ⟹ 2.0

● (1h) m / (180deg) i ⟹ (3600s) m / (3.14rad) i ⟹ 3600m / 3 ⟹ 1200m

When coercing to a non-default unit type, this means you interpret the number as in the given

units: “(1km + 500m) h” means that you interpret 1500m as 1500 hours, so the resulting value will

be 1500x3600 seconds. (As stated above, the default unit for a length is metres.)

The division operation will be an integer division (rounding down) if both operands are integers

(see the example in the table above). So if you want to get a oating point result, you have to make

sure that at least one of the operands is a oating point type.

Every data type can be combined with a string with the + operator, and will be converted to a string

representation. That way you can also concatenate strings and numbers:

● 'One plus one is equal to ' + (1+1) + '.' ⟹ 'One plus one is equal to 2.'

● 'One plus one is not equal to ' + 1 + 1 + '.' ⟹ 'One plus one is not equal to 11.'

As you can see, operators are always evaluated from left to right.

Boolean operators

Some additional notes on Boolean operators (such as and, or, not, ==):

● Of course a Boolean operation always results in true or false (integer 1 or 0).

● Values of any type can be used as Boolean operands, e.g. for “and”. They will be

interpreted as “true” if they are non-zero or non-numeric.

● != and == can be used with any data types, even non-numeric ones. When comparing two

numeric values, they are coerced using the rules above. Values of non-numeric types are

never equal to null, or to any other numbers.

- 16 -

● “and” and “or” use strict semantics: Both operands (left and right side expressions) are

evaluated and then the result is calculated. This is different from C/C++, in which short-

circuit semantics are used and the right side expression can be ignored. If you need this,

you can simply use nested XML nodes instead of a single expression, e.g. <check_all> and

<check_any>.

● Unlike != and ==, the comparison operators <, <=, >, >= are only supported for numeric

values, difficulty levels, and attention levels. Comparing other non-numeric values will

result in an error and an undened result.

● <, <=, >, >= cannot be used in XML directly, so lt, le, gt, ge are provided as alternatives. In

many cases you won’t have to use them, though - using range checks with additional XML

attributes can be more readable (see below).

Strings

You can concatenate string literals using the + operator, but there is also a printf-like syntax, which

is easier to use than concatenating lots of small pieces:

● 'The %1 %2 %3 jumps over the %5 %4'.['quick', 'brown', 'fox', 'dog', 'lazy']

● '%1 + %2 = %3'.[$a, $b, $a + $b]

See also the section about value properties below.

If you need a more sophisticated method for text substitution, try <substitute_text>. See the XML

schema documentation for this script action.

Lists

Another example for a non-numeric value is a list: It is an ordered collection of other arbitrary

values (called array or vector in other languages). It can be constructed within an expression using

the [] syntax, see above. It may also be generated by special actions and conditions, and there are

actions that can insert or remove values.

A list can contain values of arbitrary data types, even mixed in the same list - so a list can actually

contain other lists. However, some of the things that you can do with lists require that all contained

elements are of a certain type. The contents of a list can be accessed via properties, see the next

section. Lists can be empty, they are written as “[]”.

Note: When accessing a list’s elements, the numbering is 1-based, so the rst element has

number 1. This is intuitive but different from 0-based numbering in most programming languages.

Lists are stored in variables as references, so multiple variables can refer to one shared list: If you

change a shared list through a variable, you change it as well for all other variables. However, the

operators == and != can also be used on two distinct lists to compare their members.

Value properties

Properties are a crucial concept in script expressions. In the previous sections you have seen

mostly constant expressions, which are already evaluated when they are parsed at game start. For

reading and writing variables and evaluating the game’s state, properties are used.

- 17 -

Numbers don’t have any properties. Lists, for example, have quite a few of them: You can access

the number of elements; and each element is also a property of the list. A ship can have properties

like its name, the ship class, its position etc.

You can imagine properties as key/value pairs in an associative mapping: You pass the key, and

you get the value as result. For example, the list [42, null, 'text'] has the following mapping:

● 1 ⟹ 42

● 2 ⟹ null

● 3 ⟹ 'text'

● 'count' ⟹ 3

As you can see, a property key can be a number or a string. Actually there is no restriction

regarding the data type of the key.

You can look up a property by appending a dot and the key in curly braces:

● [100, 200, 300, 400].{1} ⟹ 100 (reading the rst element)

● [100, 200, ['Hello ', 'world']].{3}.{2} ⟹ 'world' (second element of the inner list, which is the

third element of the outer list)

● [].{'count'} ⟹ 0

In most cases the property key is a xed string, like “name” or “class”. You can write this like

above:

● [42].{'count'}

● $ship.{'name'}

● $ship.{'class'}

But it is easier just to write the property key without braces, which is equivalent:

● [0].count

● $ship.name

● $ship.class

(In this case, $ship is a variable. All variables start with a “$”, so they cannot be confused with

keywords.)

A list has even more properties:

● 'random' returns a randomly chosen element, or null if the list is empty

● 'min' and 'max' return the minimum or maximum (all elements have to be numeric)

○ [1, 6, 8].min ⟹ 1

● 'average' returns the average (but all element types have to be compatible)

○ [1, 6, 8].average ⟹ 5

● 'indexof' is followed by another property, and the index of the rst occurence of that key in

the list is returned, or 0 if it’s not in the list

○ [1, 6, 8].indexof.{8} ⟹ 3

● 'clone' creates a shallow copy of the list (i.e. lists that are contained as elements in the list

are not copied, only the reference to them)

○ [1, 6, 8].clone ⟹ [1, 6, 8]

Note: The printf syntax that you have seen above is also based on the property system. You

basically pass a list as property key to a string. 'foo'.[...] is just a convenient alternative notation for

{[...]}.

- 18 -

If you look up a property that does not exist, there will be an error, and the result will be null. To

test whether a property exists, you can append a question mark “?” to the lookup, which yields true

or false:

● $list.{5} ⟹ The fth element, or error if the list has less than 5 elements (or if $list is not a list

at all)

● $list.{5}? ⟹ true if the list exists and has the property 5, false otherwise

The question mark can even be applied to variables:

● $list ⟹ The value stored under the name $list, or an error if there is no such variable

● $list? ⟹ true if the variable exists, false otherwise

To look up the value of a property although it may not exist, you can use the at -sign “@” as prex:

● @$list.{5} ⟹ The fth element if the list exists and has a fth element, null otherwise

● @$list ⟹ The list if this variable exists, null otherwise

● @$list.{5}.{1} ⟹ The rst element of the fth element of $list, if it exists, null otherwise

As you can see, an error is already prevented if any link in the property chain does not exist. But

use the @ prex with care, since error messages are really helpful for detecting problems in your

scripts. The @ prex only suppresses property-related error messages and does not change any

in-game behaviour.

Static lookups

There are a few data types which are basically enumerations: They only consist of a set of named

values, e.g. the “class” data type, which is used for the component classes that exist in the game.

For all these static enumeration classes there is a lookup value of the same name, from which you

can get the named values as properties by their name. So for the type “class”, there is a value

“class” that can be used to access the classes.

Here are a few enumeration classes and corresponding example lookup values:

Data type (= value name) Examples Description

class class.ship
class.ship_xl
class.space
class.weapon

Component classes

purpose purpose.combat
purpose.transportation

Purposes

killmethod killmethod.hitbybullet
killmethod.hitbymissile

Ways to die (already used
before destruction)

datatype datatype.oat
datatype.component
datatype.class
datatype.datatype

Script value datatypes (see
typeof operator above)

prole prole.at
prole.increasing
prole.bell

Probability distribution prole
(see random ranges below)

- 19 -

cuestate cuestate.waiting
cuestate.active
cuestate.complete

Cue states (see above)

level level.easy
level.medium
level.veryhard

Mission difculty levels
(comparable with each other
using lt, gt, etc.)

attention attention.insector
attention.visible
attention.adjacentzone

Attention levels (comparable
with each other using lt, gt,
etc.)

ware ware.ore
ware.silicon

Wares

race race.argon
race.boron

Races

faction faction.player
faction.argongovernment

Factions

There is also the datatype “tag” with the lookup name “tag” - however, this is not an enumeration

type. Looking up a value by name never fails, you actually create a tag value for a given name if it

does not exist. For example, if you have a typo, like “tag.mision” instead of “tag.mission”, there

won’t be an error because any name is valid for a tag, and the tag “mision” is created on its rst

use.

Player properties

You can access many player-related game properties via the keyword “player”:

● player.name: The player’s name

● player.age: The passed in-game time since game start

● player.money: The money in the player’s account

● player.ship: The player ship object

● player.zone, player.sector, player.cluster, player.galaxy: Location of player ship

● player.copilot: The co-pilot NPC

Components, like ships, spaces, or NPCs, have their own properties. The available properties

depend on the particular component type, even if there is only one script datatype for components.

So ships may have the property “speed”, but stations don’t.

Safe properties

Most properties cause errors if you use them on non-existing objects, such as destroyed ships.

There are a few exceptions:

● exists

● isoperational

● iswreck

● isconstruction

● available

● isclass.(...)

- 20 -

These properties will not cause errors when used on “null” or on a destroyed object (which may still

be accessible from scripts in some cases), and produce null or false as results, respectively. (The

keyword “available” is used for trades, not for objects. Trades can also become invalid.) However,

when using such a property on a different data type like a number, there will still be an error.

Complete property documentation

The game les include the HTML le scriptproperties.html in the game’s root folder, and more

scriptproperties.* les in the libraries folder. Open the HTML le in a browser (only Firefox is

ofcially supported, there may be problems with Chrome). This provides you with a complete list of

all supported “base keywords” and properties. To lter in this list, you can enter an expression in

the text eld:

● Enter the beginning of a base keyword

● Enter $ followed by the data type you are looking for (e.g. “$ship”), as if it were a variable

● To see the properties of a base keyword or data type, enter a dot (“.”)

● After the dot, you can enter a property name

● You can also enter a dot (“.”) as rst character to search globally for a property

Note: The documentation contains some data types that are no real script data types, but which

are useful for documentation purposes. For example, ships and stations are both of datatype

“component”, but have different properties based on their component class.

Common attribute groups
There are many commonly used actions and conditions which share groups of attributes. The most

important ones are explained here.

Value comparisons

There are many conditions and conditional actions that require a value comparison, for example

the condition <check_value>:
<check_value value="$ware == ware.silicon and $amount != 0"/>

In the value attribute you specify a boolean expression, and if it is true (that is, not equal to zero),

the condition is met. This is a special case: This condition and all other nodes that support a value

comparison allows you to specify an upper limit, a lower limit, a number range, or a list of allowed

values. Examples:
<check_value value="FooCue.state" exact="cuestate.complete"/>

<check_value value="$foo.count" min= 5" "/>

<check_value value="$foo" max="player.age + 1min"/>

<check_value value="player.money" min="300Cr" max="600Cr"/>

<check_value value="$method" list="[killmethod.hitbymissile, killmethod.collected]"/>

<check_value value="$attention" min="attention.visible"/>

Note: Values of most enumeration types cannot be compared via min or max (also not via lt, gt,

etc.). The only data types that can be used with min and max are numbers and the enumeration

types level and attention (see above). The exact attribute can be used with any type, and is

equivalent to using the == operator.

- 21 -

Random ranges

If an action requires a value, e.g. when you set a variable to a value, you can have some

randomisation. To specify an exact value, e.g. in <set_value>, you can write this:
<set_value name="$race" exact="race.teladi"/>

To select a random element from a list, this syntax can be used:
<set_value name="$prime" list="[2, 3, 5, 7, 11]"/>

To get a random number within a given range, you can use min/max:
<set_value name="$foo" min="-20" max="20"/>
<set_value name="$timeout" max="20s"/>

min and max have to be compatible number types. Enumeration types are not allowed, not even

level and attention. The min attribute is optional and defaults to 0 (of the number type used in

max).

You can select one of 5 different probability distribution proles for the random range, “at” being

the default (all values in the range are equally likely). If you select another prole, e.g. “increasing”

to make higher numbers more likely, you also have to specify a scale value (integer) that is greater

or equal to 2. Higher scale values result in higher peaks in the distribution proles (probable values

become even more probable).
<set_value name="$foo" min="-20" max="20" profile ="profile.increasing" scale =" "4 />

Variables and namespaces
As you have seen above, you can easily access variables by writing their name (including $ prex)

in an expression. Namespaces dene in which cue the variables are actually stored (and from

which cue they are read).

Creating and removing variables

 You can create variables with certain actions and conditions, such as the <set_value> action:
<set_value name="$foo" exact="$bar + 1" />

<set_value> also exists as a “condition”, which can be useful if you want to pass information about

the conditions to the actions, that would otherwise be lost - like in a complex <check_any> event

condition, where you want to create a variable only if you are in a certain check branch. (Other

pseudo-conditions are <remove_value> and <debug_text>.)

The default operation of <set_value> is “set”, but there are more: “add”, “subtract”, and “insert”.

add and subtract change the value of an existing variable, which is created as 0 if it didn’t exist

before. If neither min, max nor exact attribute is provided, an exact value of 1 is assumed.
<set_value name="$foo" operation="add" />

The trick is that <set_value> not only works on variables, but also on list elements:
<set_value name="$list.{1}" exact="42" />

- 22 -

The operation insert is special, and only works on lists. It inserts the value at the specied position,

where the position beyond the last element is also valid:
<set_value name="$list.{1}" exact="42" operation="insert" />

This shifts the positions of all following elements up by one. Note that the default value (if

min/max/exact are missing) is null for insertions, not 1 like in other cases.

Appending is easier than that. The following actions are equivalent:
<set_value name="$list.{$list.count + 1}" exact="42" operation="insert" />
<append_to_list name="$list" exact="42" />

Inserting at a position below 1 or above $list.count + 1 is not possible.

To remove variables or list entries, use <remove_value>:
<remove_value name="$foo" />
<remove_value name="$list.{1}" />

Removing an entry from a list shifts all following elements down by one. If you want to clear an

entry without removing it from the list, just use <set_value> instead.

Accessing remote variables

You can also read and write variables in other cues by using the variable name as property key:
<set_value name="OtherCue.$foo" min="0.0" max="1.0" />
<set_value name="md.OtherScript.YetAnotherCue.$bar" exact="OtherCue.$foo" />

Instead of referencing a cue by name, you could also reference it via a keyword or another

variable:
<set_value name="static.$counter" operation="add" />
<set_value name="parent.$foo" exact="42" />
<set_value name="this.$bar" exact="parent" />
<set_value name="$baz" exact="this.$bar.$foo" />

Namespaces

In the examples above, a variable was written to and read from the “this” cue. This can be

necessary: the expression “$foo” may be different from the expression “this.$foo”. The reason for

that are namespaces.

Consider this case:
<cue name="Root" >
 <actions>
 <set_value name="$foo" />
 </actions>
 <cues>
 <cue name="SubCue" > [...]
 </cue>
 </cues>
</cue>

- 23 -

When the root cue creates $foo, the variable is stored in the Root cue directly. But SubCue and its

descendants will also need access to $foo. Of course they could write “parent.$foo” or “Root.$foo”,

but since it’s very common to have a single location for most variables in the whole cue tree, the

easy solution is to write just “$foo” - because variable names are looked up in the namespace

cue, which is the root by default. Also newly created variables end up in the namespace, and not in

“this” cue.

You can also use the keyword “namespace” in expressions to get the namespace cue.

Defining a cue’s namespace

When writing a cue, you can specify what the namespace of the cue should be, by adding the

namespace attribute. The following values are possible:

● this: Use “this” cue as namespace, even for instances: $foo == this.$foo

● static: Same as “this”, but when instantiated, use the static cue: $foo == static.$foo

● default: The namespace is inherited from the parent cue. The default for root cues and for

libraries is the same as “static”.

Pitfall: Although in general the expression “$foo == namespace.$foo” is true, there is one

exception: When library parameters are evaluated in the referencing cue, variables are resolved

using the parent’s namespace. However, the referencing cue creates a new namespace, so the

namespace keyword already points to the library, not to the parent’s namespace. Example:
<cue name="LibRef" ref="Lib">

 <param name="Param1" value="$foo" /> <!-- $foo from parent namespace -->

 <param name="Param2" value="namespace.$foo" /> <!-- LibRef.$foo (error) -->

</cue>

- 24 -

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

